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Abstract
1.	 Conservation of marine ecosystems can be improved through a better under-

standing of ecosystem functioning, particularly the cryptic underwater behav-
iours and interactions of marine predators. Image-based bio-logging devices 
(including images, videos and active acoustic) are increasingly used to monitor 
wildlife movements, foraging behaviours and their environment, but generate 
complex datasets needing efficient analytical tools.

2.	 We review advances in image-based bio-logging technology for ecological stud-
ies on marine fauna. Emphasis is placed on the diversity of data collected, merging 
research questions, challenges in image processing, and integration of Artificial 
Intelligence (AI) methods. Image-based system issues, such as exposure, focus, 
blurriness, colour balance, moving background, perspective and scale variability 
are even more challenging in underwater images where conditions change con-
stantly and cannot be controlled. We list computer vision tools and algorithms 
available for analyses of underwater images, including enhanced tracking algo-
rithms that recognise objects and treat images as a time series.

3.	 Although AI and computer vision methods offer ample and robust analytical solu-
tions for (semi-) automated image processing, their uptake by marine ecologists has 
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1  |  INTRODUC TION

1.1  |  The need for animal-borne underwater 
images in marine conservation

Earth's oceans have undergone major physical, biological and 
chemical changes during the Anthropocene, resulting in shifts in 
environmental baselines and in marine ecosystem functioning. 
Therefore, the need to effectively manage and preserve the health 
of our oceans has become a priority in environmental sciences and 
policy alike. However, conservation of marine biodiversity and 
ecosystems often faces the added challenge of being remote and 
difficult to access, whether geographically (e.g. polar regions) or 
within the deep oceans. While significant progress has been made 
in sampling physical and biogeochemical data in the oceans at in-
creasingly finer spatiotemporal scales, a major deficit of in situ bi-
ological data at scales relevant to ecosystem management persists 
(Hoegh-Guldberg & Bruno, 2010; Xavier et al., 2016). Information 
on cryptic underwater behaviours of marine animals and their in-
teraction with each other, with prey fields and with local environ-
mental variability is still lacking. Yet, such information is vital if 
we are to understand, manage and preserve ecosystem processes. 
In recent decades, data obtained from bio-logging devices have 
begun to fill these knowledge gaps (Harcourt et al., 2019; Sequeira 
et al., 2021).

Bio-logging science refers to the deployment of electronic de-
vices containing various types of sensors onto animals to collect 

information from the equipped animals (e.g. their movements, be-
haviour or physiology) or the environment they encounter (Boyd 
et al., 2004; Ropert-Coudert & Wilson, 2005). Through bio-logging, 
free-ranging marine predators can sample their immediate environ-
ment at very fine spatiotemporal scales, even in the most inaccessi-
ble parts of the oceans, while providing insights into their behaviour 
(Fedak, 2013). Various environmental sensors incorporated in bio-
logging devices have provided new opportunities to collect data 
on the physical and chemical components of oceans (e.g. salinity, 
temperature, light, fluorescence, dissolved oxygen or sound levels) 
(Charrassin et al., 2010; Roquet et al., 2014). Similarly, high-resolution 
sensors such as triaxial accelerometers and magnetometers allow 
estimation of energetic expenditure or prey encounters from fine-
scale movements of predators (Chung et  al.,  2021; Watanabe & 
Papastamatiou, 2023). Despite these considerable advances, scien-
tists continue to make assumptions about what these remotely col-
lected scalar data indicate (Carter et al., 2016). Underwater images 
collected by bio-logging devices may provide real observational data 
that could be used to validate inferences made from other sensors.

The collection of underwater images from animal-borne sen-
sors has lagged behind other types of sensor data, mainly because 
technological constraints resulted in relatively large device sizes. 
As such, most of the early image-based data were collected from 
large marine mammals (Davis et  al.,  1992). However, advances 
in consumer electronics technology are currently driving signif-
icant progress in image-based bio-logging science, enabling the 
collection of diverse underwater images (Marshall,  1998; Rutz & 

been slow. Collaboration among ecologists, modellers, statisticians, engineers and 
computer scientists is needed to integrate ecological questions, data selection and 
computational methodology. We propose a four-phase framework for image data 
processing and analysis (video checking and manipulation, image processing, image 
labelling and model development) accompanied by detailed python code. We also 
outline the additional complications in aligning the diverse scalar movement metrics 
from bio-loggers along with image-based data, such as acceleration, depth and loca-
tion, which typically are collected at different resolutions. Building analytical frame-
works for on-board image data collection (e.g. lightweight models) is also explored.

4.	 We advocate for a collaborative research community at the Ecology-AI inter-
face, emphasising sharing and exchange of both data and tools to drive cross-
disciplinary innovation. Beyond the Ecology-AI interface, we pave the path for the 
application of insights from image-based bio-logging technology enabling collab-
oration among scientists, conservation managers, and policymakers. Systematic 
applications of computer vision tools to image-based bio-logging technology will 
enhance the power these data hold, informing about the status of marine ecosys-
tems, testing and developing ecological theory and aiding conservation.

K E Y W O R D S
artificial intelligence, bio-logging, computer vision, conservation, marine ecosystems, 
underwater image
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    |  3CHIMIENTI et al.

Troscianko, 2013). Increasingly, bio-logging devices offer small cam-
eras or innovative sonar sensors (Figure 1) that enable the collection 
of still images, videos and echograms, which are directly relevant 
to the ecology of the animals carrying the devices. These devices 
can be an invaluable source of new knowledge about marine eco-
system function, leading to the testing and development of ecolog-
ical theory. For example, micro-sonar devices have increased our 
understanding of predator–prey relationships of seals at sea, both 
from the perspective of predator-hunting strategies and prey es-
cape behaviour (Chevallay et al., 2024; Goulet et al., 2019; Tournier 
et al., 2021). Video recordings from multiple predator species have 
similarly allowed us to gain new insights into (i) underwater prey-
capture and foraging behaviour (Handley & Pistorius, 2016; Thiebot 
et al., 2017; Watanuki et al., 2008), (ii) flight characteristics (Kempton 
et  al.,  2022; Schoombie et  al.,  2019), (iii) social behaviour (Hinke 
et al., 2021; McInnes & Pistorius, 2019; Papastamatiou et al., 2022; 
Pearson et al., 2019; Tremblay et al., 2014) and (iv) characteristics of 
the surrounding environment (e.g. seafloor mapping, type of ben-
thic cover) (Chapple et al., 2021; Gallagher et al., 2021). Image-based 
data can also improve measurements of physical oceanographic 
features, such as sea-ice concentration, at spatial scales relevant to 
marine predators (Linsky et al., 2020) (Figure 2).

1.2  |  Integrating image-based bio-logging in 
underwater data acquisition: Commonalities and 
challenges

Beyond the field of bio-logging, underwater images mainly origi-
nate from research in benthic ecosystems, wreckage exploration, 
inspection of underwater cables and pipelines, as well as underwa-
ter search and rescue operations. In these fields, data are typically 
collected using baited remote underwater video systems (BRUVs), 
autonomous underwater vehicles (AUVs), remotely operated vehi-
cles (ROVs) or side-scan sonars (Bagnitsky et al., 2011; Li et al., 2022; 

Phillips et  al.,  2019; Rasmussen et  al.,  2017). While these instru-
ments are often equipped with high-resolution image-sensors, the 
underwater environment poses several challenges to image data 
collection. Specifically, underwater images are inherently affected 
by the non-homogenous effects of light absorption and scatter-
ing by biotic and abiotic particles in the water (Li et al., 2020; Sun 
et al., 2023). The scattering effect by suspended particles reflecting 
light rays in various directions can render underwater images blurry. 
Additionally, the absorption caused by the degradation of light rays 
in water according to their wavelength can create low-contrast 
images or reduce visible ranges. Not all colours (wavelengths) are 
absorbed equally in water; shorter wavelengths (e.g. red, orange 
and yellow) are absorbed more quickly than longer ones (e.g. blue 
and green). This leads to the differential and successive disappear-
ance of image colours with depth and water type (coastal vs. open 
ocean) (Akkaynak & Treibitz,  2018; Pedersen et  al.,  2019), which 
would make objects appear uniform and lead to misinterpretation 
of features.

In bio-logging, the aforementioned challenges are made more 
complex given that images are collected from animals moving freely 
within the water column. Thus, despite capturing invaluable visual 
data, images collected by marine animals can suffer from loss of qual-
ity due to ever-changing backgrounds as the animal moves through 
the water column, causing shifts in focus and rapid changes in illumi-
nation, colour, water turbidity and noise (Figure 3). Collecting images 
that are representative of an individual's environment is therefore 
problematic since image quality is dependent on specific situations 
(e.g. time, location, behaviours) that are optimal for camera or sonar 
sensors. This makes it difficult to build datasets that adequately ac-
count for behavioural and environmental variability. Consequently, 
underwater image datasets are prone to uneven sample sizes with 
considerable differences in data available for different underwater 
objects (Jin & Liang, 2017). The bias toward one type of identifiable 
object over another is a real challenge when trying to make infer-
ences on an animal's environment or behaviour.

F I G U R E  1  Examples of image-based bio-logging technology (left to right: Two types of cameras and a microsonar). Typically, cameras 
record video for only a few hours (with the recording duration dependent on battery capacity, acquisition settings, and environmental 
conditions). Microsonars provide a series of acoustic images and are usually triggered by other sensors, such as pressure (depth) and the time 
of day (dimensions: 85 × 45 × 20 mm).
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4  |    CHIMIENTI et al.

F I G U R E  2  Examples of images collected using image-based bio-logging technology in marine ecosystems and the ecological information 
they provide. Predator–prey interactions: Penguins foraging (a) on a single prey item and (b) in krill swarms. Prey behaviour: (c) fish 
underneath sea ice, (d) echogram showing a prey escaping from the predator. Species interactions: (e) seals and (f) penguins travelling in 
groups. Environment: (g) view of the barrier reef and (h) sea ice.

F I G U R E  3  Examples of challenges encountered in image-based bio-logging (both camera and microsonar tags).
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    |  5CHIMIENTI et al.

1.3  |  Common AI tools for the analysis of 
image data

Computer vision-based methods can address some of the difficulties 
associated with collecting image data in underwater environments, 
including those obtained from animal-borne imagery (Belcher 
et al., 2023; Khurana & Tirpude, 2020; Li et al., 2023; Li & Du, 2022). 
These approaches, which include image enhancement, segmenta-
tion, and object detection and recognition, can be developed and 
applied together or independently.

Image enhancement approaches help restore visibility, colour, 
and natural appearance of underwater images (Figure 4). They are 
also used to extract additional information and variables (called 
‘features’) for display, object detection and classification purposes. 
Within the field of computer vision, image enhancement may in-
clude white balance and colour correction, histogram equalisation 
for contrast adjustment, and a mix of them named ‘fusion-based 
methods’. More advanced tools were recently developed using 
generative AI to enhance images such as the General Adversarial 
Networks (GANs) and Retinex-based algorithms (the latter aiming 
at eliminating the effects of diverse environmental illumination) 
(Abirami & Vincent,  2021; Li & Du,  2022). Convolutional Neural 
Networks (CNNs) are also highly effective for image enhancement 
tasks such as denoising and contrast adjustment, leveraging their 
ability to learn complex feature representations (Han et al., 2020; 

Jiang et  al.,  2020). Through working on large datasets and also 
aided by transfer learning (machine learning [ML]) technique 
where a model could learn from a wide range of images (Yang 
et al., 2024), CNNs can automatically correct and improve image 
quality.

Image segmentation can be used to segregate a digital image 
into multiple regions according to the different properties of pix-
els, for example for categorising seabed characteristics (Diesing 
et al., 2016). Segmentation can be used to extract meaningful infor-
mation for easier object detection tasks but, because it partitions an 
image into non-overlapping regions, it can find it difficult to define 
object boundaries and complex shapes (Chuang et al., 2015). Image 
segmentation approaches can range from low-level or pixel-level 
vision tasks (Figure 4) to complex models intertwined with classifi-
cation and object detection algorithms (being a single model or mul-
tiple stages). High-performance approaches to segmentation can be 
embedded in a model performing object detection and classification, 
so segmentation and detection/classification are not always distinct 
processes (Fan et al., 2021).

The last step, generally known as object detection, classifica-
tion and recognition, aims at developing computational approaches 
that provide information on the identity of objects within each 
image and their location (Zou et  al.,  2023) (Figure  4). The ideal 
underwater object detector and/or classifier should have good 
recognition abilities across various underwater targets without 

F I G U R E  4  Example of common AI tools for the analysis of image data applied to an image obtained with image-based bio-logging 
technology. (a) Original image, (b) example of enhancement: Contrast Limited Adaptive Histogram Equalisation (CLAHE) (Khurana & 
Tirpude, 2020) enhancing local contrast and bringing out details in darker or lighter areas, (c) example of segmentation and (d) of object 
detection/recognition (presence of bounding boxes) on the sharpened original image.
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6  |    CHIMIENTI et al.

false or missed detections, should exhibit high accuracy, precision 
and recall, to provide accurate target location, and should have 
low inference time and memory usage (Xu et al., 2023). In addi-
tion to challenges common to other computer vision tasks, such as 
recognition of objects from different viewpoints, illumination and 
intraclass variations, additional challenges in object detection in 
underwater images also include object rotation and scale changes 
(e.g. small objects), object density, and possible object occlusion. 
Detection tasks such as simple object identification, species rec-
ognition, overlapping object detection and detection of the same 
object at various sizes each present unique challenges and may 
require distinct approaches.

1.4  |  A roadmap to leveraging image-based 
bio-logging data for ecological research and 
conservation

Image-based bio-logging data are becoming increasingly common 
in ecology, and yet AI-based methods remain underused for their 
analysis despite advancements in computer vision and their advan-
tages in terms of analysis time gain. There is thus a timely relevance 
to review these AI-based methods currently lacking in this branch of 
bio-logging. We consequently provide an original and comprehen-
sive review to streamline image-based bio-logging data analyses for 
ecological purposes. We first review literature related to (i) under-
water image manipulation and analysis using AI and (ii) image-based 
bio-logging in the marine environment. The aim of the literature 
review is to explore the application and potential of computer vi-
sion approaches in these two fields, as well as highlight and discuss 
challenges, current gaps and opportunities for the integration of AI-
based computer vision and image-based bio-logging. We then pro-
pose a framework to promote collaborations across computer vision 
and image-based bio-logging fields, outlining steps to take when 
processing and analysing image data (along with a practical example 
in a jupyter notebook to follow through). We pay particular attention 
to the knowledge exchange required between the fields of ecology 
and computer science. Finally, we provide best-practice recommen-
dations to enhance the accessibility and utility of bio-logging images 
for conservation. While image-based bio-logging data undoubtedly 
advance our understanding of marine ecosystem dynamics, their 
application to conservation efforts remains underdeveloped. We 
promote a comprehensive approach, drawing insights from environ-
mental monitoring and computer vision to unlock the full potential 
of image-based bio-logging for conservation.

2  |  OVERVIE W OF LITER ATURE SE ARCH, 
KE Y WORDS USED AND DATA SET 
PROCESSING

We conducted three independent searches in both Scopus and Web 
of Science to capture research topics related to (i) underwater image 

manipulation and analysis using AI, (ii) bio-logging in the marine en-
vironment and (iii) image-based bio-logging in the marine environ-
ment. The following keywords were searched within the ‘abstract’ 
section of publications:

•	 Underwater image manipulation and analysis using AI. Keywords: 
‘image’, ‘imaging’, ‘detection’, ‘recognition’, ‘segmentation’, ‘classifica-
tion’, ‘enhancement’, ‘marine’, ‘underwater’.

•	 Bio-logging in the marine environment. Keywords: ‘biotelemetry’, 
‘bio-telemetry’, ‘biologging’, ‘bio-logging’, ‘animal-borne’, ‘marine’, ‘un-
derwater’, ‘sea’. We also searched for publications specifying the 
main marine taxa within abstracts, using the keywords ‘seabird’, 
‘seal’, ‘shark’, ‘pinniped’, ‘cetacean’, ‘whale’, ‘dolphin’, ‘penguin’, ‘fish’, 
‘ray’, ‘turtle’; and the mode of underwater locomotion, with the 
keywords ‘diving’, ‘swimming’, as well as the specific bio-logging 
tag used, with keywords ‘TDR’, ‘argos’, ‘accelerometer’, ‘GPS’, ‘GLS’, 
‘pop-up’, ‘archival’. This ensured that we were capturing publica-
tions that inconsistently used these words.

•	 Image-based bio-logging in the marine environment. Keywords: 
‘biotelemetry’, ‘bio-telemetry’, ‘biologging’, ‘bio-logging’, ‘animal-
borne’, ‘marine’, ‘underwater’, ‘sea’, ‘image’, ‘video’, ‘camera’, 
‘CritterCam’, ‘video-recorder’.

The lists of peer-reviewed papers obtained from the two data-
bases (hereafter ‘records’) were loaded in R (version 4.4.1; R Core 
Team, 2024). Results from the same research topic were merged and 
duplicates, retractions, and irrelevant records were removed. To il-
lustrate trends in the number of relevant publications by year, we 
included research published between 1977 and 2023. For records 
on underwater image manipulation and analysis using AI, we cal-
culated the average number of citations per year. All records with 
an average of two or more citations per year (i.e. between the me-
dian (1) and mean (2.9)) were selected for further screening. From 
this subset (2072 records), we extracted 100 records: 91 randomly 
selected records and nine records that are selected as three top-
cited papers (excluding big reviews) within each of the three main AI 
problem areas: image enhancement, segmentation, and detection/
recognition. With this selection, we aimed at extracting (i) most used 
basic solutions as well as (ii) successful custom solutions that could 
be transferred to the field of ecology. Additionally, we used latent 
Dirichlet allocation (LDA) to calculate the similarity of paper titles 
and obtained their respective distributions over AI problems pre-
sented (Jelodar et al., 2019).

Records related to image-based bio-logging technology identi-
fied from the broader search on bio-logging in the marine environ-
ment were added to the list of records belonging to the image-based 
bio-logging dataset, if they were not already included. This was done 
to ensure that we were capturing publications, which inconsistently 
reported the use of image-based bio-logging technology. It is possi-
ble that our searches might have omitted some relevant records that 
do not possess the specified words within their abstracts, but we 
should nonetheless have captured a representative sample of the 
literature.
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3  |  OVERVIE W OF RECORDS COLLEC TED 
AND EMERGING TRENDS

3.1  |  Trends in underwater image manipulation and 
analysis using AI

The literature search within the field of underwater image manipula-
tion and analysis using AI produced 6079 records. The publication 
trend from 1977 to 2023 showed exponential growth, with most 
papers published after 2010 (Figure 5).

The applications of computer vision techniques reviewed from 
the subset dataset (containing 100 records) were developed across 
various types of underwater data, including acoustic, camera, spec-
trometer, stereo and ortho-projection data. These records were fully 
reviewed and further divided into subcategories according to the AI 
problem they were addressing: image enhancement, image segmen-
tation, object detection and/or recognition. See Table 1 and the fol-
lowing paragraphs for an overview of model types.

Image enhancement was performed using both simple ap-
proaches such as hue intensity saturation (HIS), background elim-
ination, histogram equalisation methods (CLAHE, HE), fusion and 
gamma correction, as well as more complex deep learning struc-
tures such as Generative Adversarial Networks (GANs). Both image 
segmentation and object detection and/or recognition categories 
included a wide variety of Convolutional Neural Networks (CNNs) 
such as VGG, ResNet, FasterCNN, YOLO (across versions). These 
models aimed at, for example, general sonar image segmentation, 
phytoplankton classification, marine species recognition, solving the 
problem of distinguishing overlapping objects within images and de-
tecting objects of different sizes (Lee et al., 2022; Lyu et al., 2022; 
Muniraj & Dhandapani,  2023; Tang et  al.,  2021; Yeh et  al.,  2022). 
These problems, and proposed solutions, are applicable to the data 
collected via image-based bio-logging technology (see Figure 2 for 
examples) where there is the need to count, detect and identify 

overlapping objects, for example prey items and/or conspecifics 
encountered.

The metric used to assess model accuracy was not consis-
tently reported across records, varying from accuracy, mean model 
accuracy (mAP), F1 score, genuine acceptance rate (GAR) and 
Intersection over Union (IoU). Reported values across all metrics 
also showed large variation, from 0.3 (being very bad) to over 0.9 
(very good model accuracy). These results were related to the type 
of the problem that needed to be addressed (e.g. define classes 
boundaries, detection of species), type of training used (underwater 
images collected from the marine environment, synthetic images, 
images generated in laboratory experiments, online sourced images) 
as well as modelling approach used (Lee et al., 2022; Liu et al., 2019; 
Lopez-Vazquez et al., 2020; Shin et al., 2022).

Models with highest performances (>0.95, sourced from the 
pool of the 100 records) were developed for underwater acoustic 
target classification (UATC-DenseNet), a scalable lightweight live 
crab detector (EfficientNet-Det0), detection of debris using VGG16, 
MaskR-CNN for segmentation of images containing fish and de-
tecting overlapping objects (Cao et al., 2021; Doan et al., 2022; Fan 
et al., 2021; Garcia et al., 2020; Moorton et al., 2022). Light-weight 
models also emerged from the top records across both image en-
hancement and object detection/recognition. The lightweight design 
of a particular model reduces the network parameters, but without 
reducing the network performance, and is aimed at a more efficient 
‘network calculation method’ (Zhou et al., 2020). These models are 
used to deliver real-time transmission of enhanced or corrected im-
ages, as well as to detect objects of interest (Cao et al., 2021; Muksit 
et al., 2022; Yeh et al., 2022).

The LDA analysis (which looked only at the paper titles) con-
firmed the results obtained from the in-depth review (summarised 
in Table 1), by also identifying three distinct AI problems (Figure 6): 
underwater image enhancement (57.3%, Figure  5a), application 
of neural networks for image recognition (22.2%, Figure  5b) and 

F I G U R E  5  Temporal trend of the number of publications in the field of underwater image manipulation and analysis using Artificial 
Intelligence (AI) approaches.
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8  |    CHIMIENTI et al.

classification and feature detection in marine environments (20.5%, 
Figure 5c). Here, we report the top five most relevant terms.

The first problem was strongly focused on improving the qual-
ity of images captured underwater. The presence of terms such as 
‘segmentation’ and ‘underwater’ suggests that this topic is not only 
concerned with general image enhancement techniques but also 

with specific applications such as the identification and analysis of 
underwater objects and marine life. This aligns with current trends 
in computer vision, where deep learning techniques are increasingly 
applied to solve complex problems in image processing.

The second problem highlighted the role of neural networks and 
image recognition in the analysis of underwater images, particularly 

TA B L E  1  Overview of computer vision problems tackled and associated methodologies across underwater data types: Acoustic, camera, 
spectrometer, stereo and ortho-projections.

Problem Example method

Enhancement
(low contrast, colour distortion, 
low light, edge preserving, 
blurriness, polarisation in highly 
turbid waters, suspended 
particles)

•	 Water-Net (*)
•	 UWCNN (*)
•	 Retinex with optimisation for low-light conditions (*)
•	 Retinex
•	 Conversion from Red Green Blue (RGB) to Hue Intensity Saturation (HIS)
•	 Multi-scale fusion (CCMF)
•	 Contrast Limited Adaptive Histogram Equalization (CLAHE)
•	 Sharpening and adapting gamma correction
•	 Adaptive Look-UP-Table based on probability threshold.
•	 Fast local Laplacian Filter (FLLF)
•	 Histogram-equalization (HE) approximation using physics-based dichromatic modelling (PDM)
•	 Point spread function (PSF) model
•	 Image fusion
•	 Improved Segmentation Dark Channel Prior (ISDCP) defogging method
•	 Backscatter removal and colour compensation
•	 Hierarchical attention aggregation with multi-resolution feature learning for Generative Adversarial 

Networks (GANs)
•	 Degradation-aware and Colour-Corrected Network (DCN)
•	 WaterGAN
•	 Learning-based low-illumination image enhancer (LigED)
•	 Colour space conversion
•	 Background separation with binarization
•	 Noise removal with image filters
•	 Image morphology
•	 MBFFNet
•	 Transformer

Segmentation •	 Segmentation of Underwater IMagery (SUIM)-Net (*)
•	 Mask R-CNN (*)
•	 ResNet, Region Proposal Network (RPN), dynamic instance segmentation (*)
•	 ResNet50
•	 Feature pyramid network (FPN)
•	 SparseConvNet (SCN)
•	 ESANet

Detection/recognition •	 Infrared Shape Network (ISNet) (*)
•	 YOLO with improvements using FPN and PANet (*)
•	 Improved CNN with FPN (*)
•	 Support Vector Machine
•	 K-Nearest Neighbours
•	 Random Forest
•	 Faster R-CNN
•	 Underwater acoustic target classification DenseNet (UATC-DenseNet)
•	 MobileNet (across versions)
•	 EfficientDetD7
•	 VGG16
•	 Curvature scale space (CSS)
•	 Fuzzy Overclustering (FOC) using ResNet50
•	 EfficientNet-Det0
•	 Fuzzy logic controller (FLC) with extended Kalman filter (EKF)

Note: This overview was sourced from 100 selected peer-reviewed papers related to underwater image manipulation and analysis using AI. Computer 
vision approaches developed and/or adopted in the top three most cited papers for addressing the problems of enhancement, segmentation and 
detection/recognition are marked in bold with (*). References for these papers can be found in Section 3.1.
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    |  9CHIMIENTI et al.

in underwater settings. Terms such as ‘network’ and ‘neural’ indi-
cate a significant focus on deep learning architectures, specifically 

Convolutional Neural Networks (CNNs), which are widely used for 
image recognition tasks. The inclusion of ‘recognition’ suggests 
that this topic is concerned with the development and application 
of algorithms for recognition, which encompasses both object de-
tection—identifying what objects are present in an image—and ob-
ject localization, determining the position of these detected objects 
within the image. The repeated mention of ‘underwater’ indicates 
that these neural network techniques are being specifically tailored 
for underwater environments, where unique challenges such as poor 
visibility and colour distortion need to be addressed.

The third problem centred around classification and feature 
detection, with a particular emphasis on marine applications. Key 
terms like ‘classification’ indicate that tasks in this category involve 
determining which category a given image belongs to. Another task 
covered in this topic is ‘detection’, which focuses on identifying the 
species present within an image of underwater environments.

3.2  |  Bio-logging in the marine environment and 
image-based bio-logging trends

The literature search within the field of bio-logging in the marine 
environment produced 2542 records. The number of publications 
per year has increased steadily during the last two decades to ~150 
per year (Figure 7) (Ropert-Coudert et al., 2009). By contrast, the lit-
erature search within the field of image-based bio-logging research 
in the marine environment produced only 171 records. The trend 
data (Figure  8) indicated that image-based bio-logging technology 
is relatively new compared to the wider bio-logging field, with the 
number of publications increasing after 2010 with most years hav-
ing 10–35 records. Across these records, all marine taxa were rep-
resented: seabirds including penguins (35%), marine mammals (21%), 
sea turtles (20%), cartilaginous fish, for example sharks and rays 
(16%), bony fish (7%) and invertebrates (1%).

While AI tools were applied to time series data collected with 
bio-logging technology (e.g., GPS, accelerometers, time-depth re-
corders; for example Del Caño et  al.,  2021; Jeantet et  al.,  2020; 
Sutton et al., 2021) in most of these studies, image data were an-
notated (either manually or using pre-existing tools) and the con-
tent either described or matched with the relevant ancillary scalar 
data (e.g. Michel et al., 2022; Mori et al., 2005; Weber et al., 2023). 
We only found two records (~1.2% of the total) that directly applied 
computer vision tools to underwater images collected by marine 
species. In the first instance, Okuyama et al. (2015) used a template-
matching technique to extract the head movements of sea turtles 
to understand their visual assessment of surroundings. In another 
study, Conway et al.  (2021) used CNN-based approaches (VGG16, 
ResNet50, Inception v3 and Inception-ResNet v2) and recurrent 
neural network approaches (RNN-CNN) on single frames as well as 
on video sequences to classify types of behaviours of two marine 
top predators. Additionally, a search of literature published in 2024 
revealed the use of open-source Video and Image Analytics for a 
Marine Environment (VIAME) and the neural network EfficientNet 

F I G U R E  6  Latent Dirichlet allocation topic modelling results. (a) 
Problem 1: Underwater image enhancement. (b) Problem 2: Neural 
networks and image recognition. (c) Problem 3: Classification and 
feature detection.
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10  |    CHIMIENTI et al.

to estimate prey density from single-camera images (Hermanson 
et al., 2024).

4  |  A FR AME WORK TO ENHANCE THE 
USE OF IMAGE-BA SED BIO - LOGGING DATA 
FOR MARINE ECOLOGY

The bio-logging community has yet to fully embrace computer vi-
sion approaches for fast and accurate analyses of underwater image 
datasets. Indeed, while machine learning holds significant poten-
tial to contribute to the fields of marine ecology and conservation, 
large and complex image datasets are still predominantly processed 
and analysed manually (e.g. Barry et al., 2023; Wilson et al., 2017). 
These slow, labour-intensive manual tasks may discourage fur-
ther collection of invaluable underwater images across broader 
spatial and temporal scales. They can also delay the application 

of information embedded within the datasets, slowing knowledge 
transfer. Conversely, the wide range of model architectures devel-
oped and implemented within the field of computer vision that can 
be applied to underwater images can be daunting for non-specialists, 
and difficult and time-consuming to apply. Moreover, the challenges 
that ecologists might face in using AI in image-based bio-logging 
are likely species-dependent. For example, a fast-moving penguin 
equipped with a lower-quality camera (due to size constraints) will 
collect lower-resolution images compared to slower and larger mov-
ing species equipped with a large (better) camera.

4.1  |  How to: A path for starting image-based 
bio-logging data manipulation and analysis

To provide information and solutions to aid conservation in a timely 
manner, image-based bio-logging datasets need to be manipulated 

F I G U R E  7  Temporal trend of the number of publications in the field of bio-logging research in the marine environment.

F I G U R E  8  Trends in the number of publication records published in the field of bio-logging research using image-based technology in the 
marine environment. Left: By taxa. Right: By year.
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    |  11CHIMIENTI et al.

and analysed with appropriate, fast and accurate tools drawn from 
and developed within other disciplines dealing with similar data, for 
example robotics, engineering, automated ecosystem monitoring 
systems and Artificial Intelligence. This leads to interdisciplinary col-
laborations between ecologists and computer scientists. We have 
outlined the fundamental steps that ecologists, ecological model-
lers, statisticians and computer scientists should consider when 
approaching these types of analysis (Figure 9). The framework we 
propose here assumes an open science approach, with collaborative 
work and information exchange among scientists. Understanding 
the functioning of ecological systems and the modelling require-
ments and capabilities, as well as mathematical skills for the devel-
opment of novel algorithms, are necessary to analyse these complex 
datasets.

The ‘how to’ path we propose serves as a starting point. Our 
jupyter notebook (see Supporting Information; Kato Ropert & 

Ropert-Coudert,  2025) provides functional steps along with code 
examples for each phase [(1) video checking and manipulation, (2) 
image processing, (3) image labelling, and (4) model development]. 
We have opted for Python libraries because of their efficiency and 
open source resources well suited for image processing and analysis. 
‘OpenCV’ (a C++, Python and Java library) is one of the most popu-
lar computer vision libraries available in Python, while ‘TensorFlow’ 
and ‘PyTorch’ (https://​pytor​ch.​org/​) are widely used for the imple-
mentation of object detection, image segmentation and classifi-
cation algorithms. A search within the Comprehensive R Archive 
Network (CRAN), the programming language most ecologists use, 
returned three main packages for performing computer vision tasks: 
‘AzureVision’, ‘autovi’ and ‘opencv’ (Li,  2024; Ooi,  2020; Ooms 
& Wijffels,  2023), while the ‘reticulate’, ‘shiny’ and ‘Rcpp’ R pack-
ages help bridge the gap between R and Python languages (Chang 
et al., 2024; Eddelbuettel & François, 2011; Ushey et al., 2024).

F I G U R E  9  Overview of analytical phases for the manipulation and analysis of image-based bio-logging data, from data collection to 
training and running a model. Sample codes for detailed steps are available from the jupyter notebook in Supporting Information.
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12  |    CHIMIENTI et al.

Once datasets have been collected, we suggest getting the 
basic properties of the loaded videos such as the frame rate and 
total number of frames, processing frames and handling the miss-
ing ones, and finally saving the processed data and extracting 
specific frames as images (Phase 1 in Figure  9, steps 1–7 in ju-
pyter notebook). Depending on the video formatting from spe-
cific bio-logging devices, time between frames might not always 
be constant. Regular time stamps for image data are essential if 
researchers wish to match other data streams by date and time 
(see Section  4.4), and for further analyses requiring time series 
data (see Section  5). Additionally to checking the time between 
frames, calculating the red value of each individual image can help 
detect overexposure or darkness of each frame (see Step 2–4 in 
jupyter notebook). This step facilitates future data screening and 
can potentially reduce the number of frames needing processing. 
Individual frames can be processed with image enhancement if re-
quired (Phase 2, Figure 9, see steps 8–11 in jupyter notebook for 
sample code). Conversion to grayscale and work on saturation can 
help with images with low exposure, while image edge sharpening 
helps define boundaries of the objects within each image. We sug-
gest that phases 1 and 2 be performed by or under the supervision 
of ecologists and ecological modellers, since knowledge of data 
collection and species biology and ecology is required.

Defining ‘objects of interest’ within images should be dis-
cussed prior to analyses (Phase 3 in Figure 9, step 12 in jupyter 
notebook). Decisions on the appropriate modelling tools will then 
depend on the research focus, for example image segmentation 
or object detection. The steps needed to prepare the dataset for 
computer vision analysis are interlinked with the level of detection 
required, for example simple binary classification (presence/ab-
sence of an animal or object within a frame), object classification 
(species recognition, recognition of environmental features) or 
tracking objects across frames (prey items being chased by marine 
predators often disappear and reappear across images). We em-
phasise the importance of these steps since the way the datasets 
are labelled will affect the number and/or type of classes to be 
detected, as well as the number of observations in each class and, 
as a consequence, the model performance (Belcher et al., 2023). 
Labelling objects within images can be achieved by using common 
open access labelling tools, such as LabelImg (python package 
on https://​pypi.​org/​), Label Studio (https://​label​stud.​io/​), BIIGLE 
(Langenkämper et  al.,  2017) and VIAME (Richards et  al.,  2019). 
Phase 3 requires collaborative work across disciplines, as ecolo-
gists would know what to label, while computer scientists would 
advise on analytical tools and methods.

At this point, an object detection model can be implemented 
and trained (phase 4 Figure  9, steps 13 and 14 in jupyter note-
book), potentially starting with a pre-trained deep learning model 
(e.g. YOLOv5) that would need to be fine-tuned. We suggest split-
ting the dataset in to ‘train’ and ‘test’ subsamples (usually between 
70% and 80% of the total dataset available to train the model and 
20%–30% to test it) (Piechaud et al., 2019). The trained model runs 
inferences on an image, and returns predicted bounding boxes. In 

the provided example, the model predicted two boxes, stating a 
label and the confidence around the classification (see step 14 in 
our jupyter notebook), with a clear case of object mislabeling (both 
label and location of predicted boxes are incorrect). The training loss 
curves—both training and validation box losses—show how well the 
model learns from the data and how well it can generalise to unseen 
data. If both decrease, the model is learning well. If validation loss 
stops decreasing or increases while training loss keeps dropping, the 
model is overfitting (memorising training data but not generalising). 
If both losses stay high, the model is underfitting (not learning pat-
terns well).

To develop and implement new models (Phase 4, Figure 9), we 
recommend starting with the PyTorch library since it contains the 
structures of the models mentioned in Table  1. Decisions regard-
ing model architecture and implementation as well as interpretation 
of model performances would benefit from inputs from computer 
scientists, statisticians, and ecological modellers, while ecological 
interpretation of results would rely more on ecologists and eco-
logical modellers. Model evaluation should include precision, re-
call, F1 scores, intersect over union (IoU), mean average precision 
(mAP) and confusion matrices (Belcher et al., 2023). The appropriate 
score index depends on the research question and the impact that 
object classification—or misclassification (or object detection/mis-
detection)—has on the ecological meaning of the results. For exam-
ple, if an object is correctly classified 50% of the time, the model 
might not be learning correctly, that is similar objects are associated 
with different classes or there might not be enough images across 
classes. The confusion matrix provides an estimate of this misclas-
sification error that can be used to improve the model, as well as 
information that can be used to fine-tune other models.

Biases should be expected in the training datasets. This often 
arises from imbalanced or underrepresented samples, which can 
lead to models that favour groups over others or yield inaccurate 
predictions in real-world applications (see also ‘Common caveats and 
bugs’ in our jupyter notebook). Class weighting and transfer learning 
(e.g. use of a model trained on another dataset) can for example help 
dealing with such issues (Siddiqui et  al.,  2018). Overfitting occurs 
when a machine learning model learns the training data too well, 
capturing noise and specific patterns that don't generalise to new 
data, leading to poor performance on unseen examples. To check 
for overfitting, we suggest monitoring, for example, the model's per-
formance on a separate validation set: if it performs well on training 
data but poorly on validation data, overfitting is likely to occur (train 
the model from image data collected from one study site and vali-
date the predictions on image data collected from a different study 
site for example).

4.2  |  Standardising image data to promote 
collaboration across disciplines

Preparing datasets for subsequent analysis across research disci-
plines (e.g. ecology and computer science) is a challenge. Ecologists 
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    |  13CHIMIENTI et al.

might tend to pre-select ‘frames of interest’ depending on the re-
search question(s) (e.g. the detection of prey capture events by 
marine predators), and manually sort and label images with the be-
haviour of interest (Aoki et al., 2013; Del Caño et al., 2021; Dodge 
et al., 2018). Decisions are thus made on a case-by-case basis and 
are rarely transferable across case studies. On the other hand, com-
puter scientists tend to label all objects within each frame, yet these 
label formats are rarely standardised (Belcher et al., 2023). Moving 
toward a standardised way of labelling and processing images will 
generate datasets that could be used across fields. YOLO text 
files, Pascal VOC XML files, and COCO (‘common objects in con-
text’, https://​cocod​ataset.​org/​) Java Script Object Notation (JSON) 
are currently the preferred formats for metadata storage (Belcher 
et al., 2023). It is therefore critical that collaborators are in agree-
ment with the approach to image processing before proceeding with 
the analytical steps.

4.3  |  Open access, reproducibility, transferability of 
data and software

Robust, innovative, interdisciplinary projects benefit from access to 
analytical tools and large and comprehensive repositories for data as 
well as analytical processes and pipelines. A wide variety of source 
codes across analytical processes is freely accessible from GitHub, 
a code hosting platform popular with developers worldwide. The 
GitHub platform offers a free version for individual developers and 
open-source projects. As the ecological community continues to 
embrace open science, it is imperative to create a culture that not 
only values data sharing but also supports the infrastructure neces-
sary for effective collaboration and communication. Stakeholders, 
researchers, educators, policymakers and community members 
are and should continue to be involved in the conversation about 
open science. Examples of open-access data repository within the 
bio-logging community include Movebank (https://​www.​moveb​ank.​
org), the Expert Group on Antarctic Biodiversity Informatics of SCAR 
(https://​scar.​org/​scien​ce/​life/​egabi​), Biologging Intelligent Platform 
(https://​www.​bip-​earth.​com/​), Ocean Biodiversity Information 
System (OBIS) (https://​obis.​org), and Global Biodiversity Information 
Facility (GBIF) (https://​www.​gbif.​org/​) (Hindell et  al.,  2020; Kays 
et al., 2022).

Gathering robust and diverse image datasets to train and build 
computer vision models is challenging (Chen et  al.,  2024). Large 
image repositories on marine invertebrates and fish are becoming 
available, for example CoralNet (https://​coral​net.​ucsd.​edu), Woods 
Hole Plankton Dataset (https://​darch​ive.​mblwh​oilib​rary.​org/​home) 
and Wildfish (Zhuang et  al.,  2018). Image repositories currently 
allow for both png and jpeg image formats. Choosing the appropriate 
image compression is also being evaluated in computer vision. JPEG 
XR format is suggested for low resolution and high definition (HD) 
image compressions, while formats such as JPEG 2000 and JPEG XT 
are suggested for greyscale and 4K image compressions respectively 
(Naveen Kumar et al., 2021).

Thus far, government and institutional grants typically pro-
vide significant resources for supporting repositories, especially 
for initiatives aligned with public interest, scientific advancement, 
and conservation. Changing political priorities, economic fluctu-
ations, and grant cycles put the continuity of these platforms at 
risk. Long-term government commitments are a more sustainable 
approach (e.g. the European based repository Zenodo, https://​ze-
nodo.​org/​ , the French government-based repository https://​reche​
rche.​data.​gouv.​fr/​en, American scientific agency https://​data.​
noaa.​gov/​onest​op/​, Biologging Intelligent Platform, https://​www.​
bip-​earth.​com/​).

4.4  |  Data standardisation across sensors

It is important to note that animal-borne underwater images are 
merely a small fraction of the complex datasets collected by bio-
logging devices. Bio-loggers are often multi-sensor devices with at 
least a pressure sensor to record depth and a geolocation sensor, 
whether GPS or Argos, to record location. Tri-dimensional acceler-
ometers and magnetometers that record both fine-scale movements 
and the position of the animal's body in space have also become 
common sensors in bio-loggers. These ancillary data provide com-
plementary information to the images to help decipher the behav-
iour of marine animals.

The temporal synchronisation of data collected from these 
multi-sensor devices is an area in need of standardisation. Video 
and ancillary data are often sampled by separate devices that are 
not temporally synchronised, leaving the user to manually syn-
chronise these data streams prior to analysis. Synchronisation is 
often done manually through visual inspection, but without a clear 
definition of the process that was followed (although some tag 
manufacturers have started to provide help on data handling and 
synchronisation). Such synchronisation may be difficult to main-
tain over longer periods, as image-based sensors are often subject 
to temporal drift (Del Caño et al., 2021), and synchronisation on 
a single point in time may not be sufficient. This may be further 
complicated by the way that video loggers from different man-
ufacturers save individual video files. Low-cost, miniature video 
loggers mostly record with a variable frame rate, that is the num-
ber of frames per second varies with time, but files are saved at a 
higher, fixed frame rate by duplicating missing frames. While some 
manufacturers produce bio-logger devices that sample video and 
ancillary data on a single processor with a common clock, this is 
not the norm. Wider availability of single processor devices would 
greatly reduce the complexities of synchronising various data 
streams in the future.

Further steps in data standardisation are required before incor-
porating them all into a single global analytical framework (e.g. Cade 
et al., 2021; Conway et al., 2021). Understanding the complexity of 
marine ecosystems and aiding conservation requires multifactorial 
data collection, as well as tools to handle and process large, complex 
and mismatched datasets.
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5  |  FROM DISCRETE OBJEC T DETEC TION 
TO DYNAMIC TR ACKING

Oceans are dynamic three-dimensional environments in which 
animals continuously move at different speeds. Most underwater 
images collected by bio-logging devices are videos or time series 
images that directly show the movements and activities of marine 
animals, and their interactions with each other and their environ-
ment. Yet, most of the methods for image analysis developed to 
date reduce videos to discrete as they inherently do not process 
data as a time series. To capture the complex and dynamic na-
ture of videos and time series images, tracking-based methods ac-
counting for the temporal aspect of the collected images need to 
be implemented.

Within the image-based bio-logging literature, long short-term 
memory (LSTM), SimpleRNN, and gated recurrent units (GRU) have 
been proposed as valuable options (Conway et  al.,  2021). These 
models, however, cannot be trained in parallel. Given a sequence of 
images, the computed hidden states/objects of the first image need 
to be computed first in order to encode the second image. This is a 
first-order information retention process, which means that the in-
formation obtained from the first image will not affect the detection 
of hidden states or objects in the third image. On the other hand, 
transformer attention-based models are sequence-to-sequence 
deep learning models that process the image sequence as a whole. 
They can learn both local and global features of an image and treat 
information extracted from image-based bio-logging devices as a 
time series (Bi et al., 2021; Guo et al., 2022). Overall, these models 
can follow relevant data in space and time at a much finer scale to 
better understand a complex and fluid ecosystem. Ultimately, this 
information can be used to predict future trends, such as future be-
haviours or interactions displayed by an animal given a specific envi-
ronment or change thereof. However, the structure of these models 
remains complex, and interdisciplinary collaborations between ecol-
ogists and computing scientists will undoubtedly help to fully ex-
plore, develop, and democratise these dynamic models for marine 
ecological purposes.

6  |  DATA PROCESSING ON-BOARD 
BIO -LOGGERS

To date, all bio-loggers that collect underwater images have to be 
physically recovered to access the data. Thus, for most marine spe-
cies whose individual movements are unpredictable, underwater 
imagery from bio-loggers is currently not available. This creates a 
considerable taxonomic and geographical bias in current research 
and our understanding of the most inaccessible environments 
(Treasure et  al.,  2017). Transmitting bio-logging data to receivers 
such as Argos satellites, GSM or Mote systems can help to circum-
vent this hurdle (Jeanniard-du-Dot et al., 2017; Jessopp et al., 2013; 
Vacquié-Garcia et  al.,  2024; Vincent et  al.,  2010). However, effi-
ciently synthesising raw imagery data on-board bio-loggers for near 

real-time transmission faces the simultaneous constraints of limited 
processors and battery capacities as well as device size.

Given the ongoing developments of lightweight underwater sam-
pling platforms in the fields of computer vision, robotics, engineering 
and more recently bio-logging, we recommend that future develop-
ment of on-board image processing for near real-time transmission 
be based on these types of models (Cao et al., 2021; Li et al., 2017; 
Lyu et al., 2022; Muksit et al., 2022; Tanigaki et al., 2023). Lightweight 
models have a simpler architecture with fewer networks than those 
currently available, and thus are less computer intensive. As such, 
they maximise battery life while maintaining the same level of per-
formance as more complex models. For example, Yeh et al.  (2022) 
proposed a lightweight underwater object detection network for 
joint image enhancement and object detection (‘Improved CNN 
with FPN’; Table 1). The effectiveness of this model was tested on 
a Raspberry Pi platform and its performance was superior to Faster 
R-CNN, YOLOv2 and YOLOv3 (Yeh et al., 2022). To our knowledge, 
manipulation and analysis of underwater images have not yet been 
implemented on board bio-logging devices. Overcoming this hurdle 
should be a research priority as it will open a new avenue of under-
standing of poorly sampled areas of the oceans.

7  |  HOW IMAGE-BA SED BIO - LOGGING 
RESE ARCH PROVIDES EFFEC TIVE 
CONSERVATION TOOL S

Image-based learning approaches similar to those used in bio-logging 
applications are increasingly applied in underwater conservation. 
By leveraging advanced machine-learning algorithms, underwater 
videos at fixed stations or on gliders have been used to catalogue 
marine species, map coral reefs or monitor environmental change 
(Magneville et  al.,  2023; Sauder et  al.,  2024; Schmid et  al.,  2020). 
AI-powered image systems can detect signs of coral bleaching or 
disease, enabling timely intervention (Kopecky et al., 2023; Sauder 
et al., 2024). AI has also been widely used to monitor marine sys-
tems using both active and passive acoustics, to assist in interpreting 
sound backscatter into images or echograms for example (Gugele 
et al., 2021). Echograms from active acoustics enhance the ability 
to characterise and map habitats and species occurrence. In pas-
sive acoustics, AI-based models applied to spectrogram images can 
identify species and interpret their behaviours (e.g. tail slaps warn-
ing of predators, or whale songs near a breeding range) (Dudzinski 
et  al.,  2009). AI detection classification models operating on real-
time data streams can lead to management of commercial ship slow-
down and fisheries closures to protect vulnerable marine life (e.g. 
detection of North Atlantic right whales (Eubalaena glacialis) in the 
shipping lanes of the Gulf of St. Lawrence, or of Southern Resident 
killer whales (Orcinus orca) in the shipping lanes of the Salish Sea, 
Canada). In short, AI-based methods provide powerful new tools for 
ecologists (Pichler & Hartig, 2023).

For image-based bio-logging to become an effective con-
servation tool, long-term, consistent data collation is essential, 
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particularly when integrated with AI-driven solutions and open 
science practices. This initial step creates a broader community for 
cross-disciplinary collaboration, beginning with scientists directly 
involved in the collection, collation, and analysis of image-based bio-
logging data. Predictions emerging from AI-based analytical models 
(see also Figure 9) provide insights into marine ecosystem dynamics, 
such as predator–prey interactions, prey behaviour, interspecies re-
lationships, mid-trophic layer dynamics, conditions in environments 
like sea ice and coral reefs, and many others. These insights inform 
ecological models further supporting environmental monitoring and 
conservation efforts. We anticipate that image-based bio-logging 
datasets will soon contribute to existing remote sensing and envi-
ronmental monitoring databases, such as EMODnet (https://​emodn​
et.​ec.​europa.​eu/​en) and NOAA's Ocean Explorer (https://​ocean​
explo​rer.​noaa.​gov). Large-scale democratisation of AI-based image 
processing and analysis within the ecological community, enabled by 
ongoing collaboration with the computer vision community, is essen-
tial for unlocking the full potential of recent advances in bio-logging 
data acquisition, producing timely, actionable outputs for conser-
vation. At this stage, open science practices are crucial for sharing 
results, summary outputs, and associated metadata. These shared 
resources then flow to conservation professionals, ecosystem man-
agers and policymakers. Only by implementing close collaborations 
between all these professionals, along with open science practices, 
will we be able to take full advantage of the wealth of new and in-
valuable knowledge that direct observation through bio-logging 
based underwater images provides. This will then be translated into 
informed and effective conservation actions in a timely manner.
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