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Knowledge Discovery guided by Domain Knowledge (1)

I The process of Knowledge Discovery
guided by Domain Knowledge (KDDK)
is applied on large volumes of data for
extracting information units which are
useful, significant, and reusable.

I KDDK is based on four main
operations: data preparation, data
mining, interpretation and
representation of the extracted units.

I KDDK is iterative and interactive,
guided by an analyst, and by domain
knowledge.
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KDDK is an interactive and iterative process that can be replayed. 



Knowledge Discovery guided by Domain Knowledge (2)

I One the core idea of KDDK is
classification, which is involved in all
tasks of data and knowledge
processing:

I mining: Formal Concept Analysis
(FCA), pattern mining, HMM. . .

I modeling: hierarchy of concepts and
relations,

I representing: concepts and relations as
knowledge units,

I reasoning and problem solving:
classification-based and case-based
reasoning.
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Knowledge Discovery guided by Domain Knowledge (3)

I KDDK is used for knowledge
engineering and problem-solving
activities in some application domains:
I agronomy
I astronomy
I biology
I chemistry
I cooking
I medicine
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Data
mining
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KDDK is an interactive and iterative process that can be replayed. FCA and KDD
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Four research dimensions in Orpailleur

I Knowledge Discovery guided by Domain Knowledge (KDDK)
−→ Themes and variations in FCA: pattern structures, RCA,
triadic concept analysis
−→ Pattern mining and association rule extraction.
−→ Text mining

I Knowledge systems and Semantic Web
−→ CBR and textual adaptation

I Implementing KDDK in Life sciences
−→ Data processing and knowledge mining

I Structural Systems Biology
−→ Docking, structural similarity and 3-D classification

FCA and KDD
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Mining graphs and other complex data

I Graph Pattern Structures: generalization of interval pattern
structures.

I Text mining on a graph-based representation of texts for
allowing a deeper analysis of texts (e.g. multidimensional,
linguistic, temporal).

I Retrieval, annotation and indexing of complex data (e.g.
movie scenes, news) guided by domain knowledge and
“environment” (subject to dynamic changes).

FCA and KDD



Software

I The Coron Platform: a KDDK toolkit for pattern and rule mining
(http://coron.loria.fr).

I The Carottage system: a second-order HMM system for
spatio-temporal classification
(http://www.loria.fr/~jfmari/App/)

I Kasimir and CabamakA: decision support in oncology
(http://katexowl.loria.fr).

I Taaable: CBR system for the cooking domain, with recipe
adaptation (http://taaable.fr).

I BioRegistry repository: content metadata of biological resources
(http://bioregistry.loria.fr).

I Hex: spherical polar Fourier docking program
(http://hex.loria.fr) and HexServer, an interface to the
GPU-powered Hex (http://hexserver.loria.fr).

I 3D-Blast: clustering and classifying protein folds
(http://threedblast.loria.fr).

http://coron.loria.fr
http://www.loria.fr/~jfmari/App/
http://katexowl.loria.fr
http://taaable.fr
http://bioregistry.loria.fr
http://hex.loria.fr
http://hexserver.loria.fr
http://threedblast.loria.fr
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FCA: Themes

I A formal context is a triple (G ,M, I ) where G is a set of objects, M
a set of attributes, and I a binary relation such as (g ,m) ∈ I means
that “object g owns attribute m”.

I A Galois connection characterizes formal concepts:

A′ = {m ∈ M | ∀g ∈ A ⊆ G : (g ,m) ∈ I}

B ′ = {g ∈ G | ∀m ∈ B ⊆ M : (g ,m) ∈ I}

I (A,B) is a formal concept with extent A = B ′ and intent B = A′,
e.g. ({g3, g4, g5}, {m2,m3}).

M. Barbut and B. Monjardet. Ordre et classification. Hachette, 1970.
B. Ganter and R. Wille. Formal Concept Analysis. Springer, 1999.

m1 m2 m3

g1 × ×
g2 × ×
g3 × ×
g4 × ×
g5 × × ×

FCA and KDD
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FCA: Themes

(A1,B1) ≤ (A2,B2)⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1)

({g1, g5}, {m1,m3}) ≤ ({g1, g2, g5}, {m1})

I A concept lattice is an ordered set of concepts with interesting
properties:

I Concepts are pairs of maximal sets of objects and corresponding
sets of attributes.

I The lattice provides a synthetic representation of data without loss
of information and interpretation capabilities for knowledge
discovery purposes.

FCA and KDD
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FCA: first variation with Pattern structures

A pattern structure (G , (D,u), δ) is based on:

I a set G of objects
I a semi-lattice (D,u) of descriptions or patterns
I a mapping δ associating an object g with its description
δ(g) ∈ D

I a Galois connection:

A� = ug∈Aδ(g) for A ⊆ G

d� = {g ∈ G |d v δ(g)} for d ∈ (D,u)

FCA and KDD
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FCA: second variation with Triadic Concept Analysis (TCA)

I Given a numerical dataset (G ,M,W , I ), a bicluster is a pair
(A,B) with A ⊆ G and B ⊆ M.

I G a set of objects (rows)
I M a set of attributes (columns)
I W a set of values
I I ⊆ G ×M ×W a relation s.t. (g ,m,w) ∈ I , written

m(g) = w , means that object g takes the value w for
attribute m

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

FCA and KDD
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FCA: third variation with Relational Concept Analysis (RCA)

I The objective of RCA is to extend the purpose of FCA for
taking into account relations between objects.

I The RCA process relies on the following main points:
I a relational model based on the entity-relationship model,
I a conceptual scaling process allowing to represent relations

between objects as relational attributes,
I an iterative process for designing a concept lattice where

concept intents include binary and relational attributes.

I The RCA process provides “relational structures” that can be
represented as ontology concepts within a knowledge
representation formalism such as description logics (DLs).

FCA and KDD
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Pattern Structures

I Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli and Sébastien Duplessis. Mining Gene
Expression Data with Pattern Structures in Formal Concept Analysis, Information Science,
181(10):1989–2001, 2011.

I Mehdi Kaytoue, Sergei O. Kuznetsov and Amedeo Napoli. Revisiting Numerical Pattern Mining
with Formal Concept Analysis, in Proceedings of 22nd International Joint Conference on
Artificial Intelligence (IJCAI-11), Barcelona, Spain, 2011.

I Zainab Assaghir, Mehdi Kaytoue, and Amedeo Napoli and Henri Prade. Managing Information
Fusion with Formal Concept Analysis, in Proceedings of 7th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2010), LNCS 6408, Springer, pages
104–115, 2010.

FCA and KDD
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Handling numerical data with FCA?

Conceptual scaling (discretization or binarization)
An object has an attribute if its value lies in a predefined interval

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

m1, [4, 5] m2, [4, 7] m3, [5, 6]

g1 × × ×
g2
g3 × ×
g4 ×
g5 × ×

Different scalings: different interpretations of the data

General problem
How to directly build a concept lattice from numerical data?

FCA and KDD
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How to handle complex descriptions

An intersection as a similarity operator

I ∩ behaves as similarity operator

{m1,m2} ∩ {m1,m3} = {m1}

I ∩ induces an ordering relation ⊆
N ∩ O = N ⇐⇒ N ⊆ O

{m1} ∩ {m1,m2} = {m1} ⇐⇒ {m1} ⊆ {m1,m2}

I ∩ has the properties of a meet u in a semi lattice,
a commutative, associative and idempotent operation

c u d = c ⇐⇒ c v d

FCA and KDD
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Pattern structure

Given by (G , (D,u), δ)

I G a set of objects
I (D,u) a semi-lattice of descriptions or patterns
I δ a mapping such as δ(g) ∈ D describes object g

A Galois connection

A� = ug∈Aδ(g) for A ⊆ G

d� = {g ∈ G |d v δ(g)} for d ∈ (D,u)

FCA and KDD



Interval Pattern Structure

I A meet-semi-lattice for intervals (D,u) where D is a set of intervals,

I a possible choice for the meet operator is the convexification of
intervals:

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)]
[4, 5] u [5, 5] = [4, 5]

[a1, b1] v [a2, b2] ⇐⇒ [a2, b2] ⊆ [a1, b1]
[4, 5] v [5, 5] ⇐⇒ [5, 5] ⊆ [4, 5]
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Interval Pattern Structure

I An interval pattern p is an n-dimensional vector of intervals:
p = 〈[ai, bi]〉i∈[1,n]

I Operation u and order of interval patterns:
Given interval patterns p = 〈[ai, bi]〉i∈[1,n] and
q = 〈[ci, di]〉i∈[1,n]:

I

p u q = 〈[ai , bi ]〉i∈[1,n] u 〈[ci , di ]〉i∈[1,n]
p u q = 〈[ai , bi ] u [ci , di ]〉i∈[1,n]

I

p u q = p ⇔ p v q
p v q ⇔ [ai , bi ] v [ci , di ], ∀i ∈ [1, n]

FCA and KDD
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Interval pattern structures based on convexification

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

{g1, g2}� = ug∈{g1,g2}δ(g)

= 〈5, 7, 6〉 u 〈6, 8, 4〉
= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G |〈[5, 6], [7, 8], [4, 6]〉 v δ(g)}
= {g1, g2, g5}

({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a pattern concept

FCA and KDD



Interval pattern concept lattice

I Highest concepts: largest extents and largest intervals
(smallest intents)

I Lowest concepts: smallest extents and smallest intervals
(largest intents)

I Problem: efficient pattern mining.



Knowledge Discovery guided by Domain Knowledge
FCA: themes and variations
Pattern Structures in FCA

Triadic Analysis and TriMax
Conclusion

Links with conceptual scaling

Interordinal scaling [Ganter & Wille]

I A scale to encode intervals of attribute values
m1 ≤ 4 m1 ≤ 5 m1 ≤ 6 m1 ≥ 4 m1 ≥ 5 m1 ≥ 6

4 × × × ×
5 × × × ×
6 × × × ×

I Equivalent concept lattice
I Example

({g1, g2, g5}, {m1 ≤ 6,m1 ≥ 4,m1 ≥ 5, ... , ... })
({g1, g2, g5}, 〈[5, 6] , ... , ... 〉)

Why should we use pattern structures as we have scaling?
Processing a pattern structure is more efficient

FCA and KDD
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Interval pattern search space

Counting all possible interval patterns with interordinal scaling

〈[am1 , bm1 ], [am2 , bm2 ], ...〉
where ami , bmi ∈Wmi

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

∏
i∈{1,...,|M|}

|Wmi | × (|Wmi |+ 1)

2

360 possible interval patterns in our small example

FCA and KDD
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Questions on interval pattern mining

I What are the links between numerical pattern structures and
pattern mining?

I How can we reuse (good) ideas from pattern mining, i.e.
closed patterns, generators and equivalence classes, in the
framework of pattern structures?

FCA and KDD
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3

g1 5 6
g2 6 4
g3 4 5
g4 4 8
g5 5 5

〈[4, 5], [5, 6]〉� = {g1, g3, g5}
〈[4, 5], [4, 7]〉� = {g1, g3, g5}
〈[4, 5], [4, 6]〉� = {g1, g3, g5}
〈[4, 6], [5, 6]〉� = {g1, g3, g5}
〈[4, 5], [5, 7]〉� = {g1, g3, g5}
〈[4, 6], [5, 7]〉� = {g1, g3, g5}

3

4

5

6

7

8

3 4 5 6
m1

m3

b

b

b

b

b

δ(g1)

δ(g2)

δ(g3)

δ(g4)

δ(g5)

FCA and KDD
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3
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〈[4, 6], [5, 7]〉� = {g1, g3, g5}

3

4

5

6

7

8

3 4 5 6
m1

m3

b

b

b

b

b

δ(g1)

δ(g2)

δ(g3)

δ(g4)

δ(g5)

FCA and KDD



Knowledge Discovery guided by Domain Knowledge
FCA: themes and variations
Pattern Structures in FCA

Triadic Analysis and TriMax
Conclusion

Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3

g1 5 6
g2 6 4
g3 4 5
g4 4 8
g5 5 5

〈[4, 5], [5, 6]〉� = {g1, g3, g5}
〈[4, 5], [4, 7]〉� = {g1, g3, g5}
〈[4, 5], [4, 6]〉� = {g1, g3, g5}
〈[4, 6], [5, 6]〉� = {g1, g3, g5}
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〈[4, 6], [5, 7]〉� = {g1, g3, g5}
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3

g1 5 6
g2 6 4
g3 4 5
g4 4 8
g5 5 5

〈[4, 5], [5, 6]〉� = {g1, g3, g5}
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Semantics for interval patterns

Interval patterns as (hyper) rectangles
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A condensed representation

Equivalence classes of interval patterns
Two interval patterns with same image are said to be equivalent

c ∼= d ⇐⇒ c� = d�

Equivalence class of a pattern d

[d ] = {c |c ∼= d}

I with a unique closed pattern: the smallest rectangle
I and one or several generators: the largest rectangles

In the example: 360 patterns ; 18 closed patterns ; 44
generators

FCA and KDD
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Algorithms & experiments

Algorithms: MintIntChange, MinIntChangeG[t|h]

4 5 6

[4,5] [5,6]

[4,6]

Principle with an example
1. Start from the most general interval pattern: 〈[4, 6], [7, 9], [4, 8]〉
2. Apply next minimal change following a canonical order c = 〈[4, 5], [7, 9], [4, 8]〉

3. Apply closure operator c�� = 〈[4, 5], [7, 9], [5, 8]〉
4. If canonicity test fails: backtrack (in the depth first traversal)

5. Otherwise go to 2. with c�� = 〈[4, 5], [7, 9], [5, 8]〉

FCA and KDD



Algorithms & experiments

Algorithms: MintIntChange, MinIntChangeG[t|h]

4 5 6

[4,5] [5,6]

[4,6]

Experiments

I Mining several datasets from Bilkent University Repository
I Compression rate varies between 107 and 109

I Interordinal scaling
I not efficient even with best algorithms (e.g. LCMv2)
I redundancy problem discarding its use for generator extraction
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Discussion

I Potential applications:
I data privacy and k-anonymisation
I k-box problem in computational geometry
I quantitative association rule mining
I data summarization

I Extension: focus on generator extraction
I Problems:

I compression is not enough when considering very large data set
I numerical data are noisy: this calls for fault-tolerant condensed

representations

FCA and KDD
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Triadic Concept Analysis and Biclustering

I Mehdi Kaytoue, Sergi O. Kuznetsov and Amedeo Napoli. Biclustering Numerical Data in Formal
Concept Analysis, in Proceedings of 9th International Conference on Formal Concept Analysis
(ICFCA 2011), LNCS 6628, Springer, pages 135–150, 2011.

I Mehdi Kaytoue, Sergei O. Kuznetsov, Juraj Macko, Wagner Meira and Amedeo Napoli. Mining
Biclusters of Similar Values with Triadic Concept Analysis, in Proceedings of the Eighth
International Conference on Concept Lattices and their Applications - CLA 2011, Amedeo Napoli
and Vilem Vychodil editors, INRIA Nancy Grand Est - LORIA, pages 175-190, 2011.

FCA and KDD



Triadic FCA (TCA)

Triadic context
I (K1,K2,K3,Y ), where K1, K2, and K3 are respectively called

sets of objects, attributes, conditions, and Y ⊆ K1 × K2 × K3.
I The fact (a1, a2, a3) ∈ Y is interpreted as the statement object

a1 has the attribute a2 under condition a3.

Triadic concept

I A triadic concept of (K1,K2,K3,Y ) is a triple (A1,A2,A3)
with A1 ⊆ K1, A2 ⊆ K2 and A3 ⊆ K3 satisfying the two
following statements:

I (i) A1 × A2 × A3 ⊆ Y , X1 × X2 × X3 ⊆ Y
I (ii) A1 ⊆ X1, A2 ⊆ X2 and A3 ⊆ X3 implies A1 = X1, A2 = X2

and A3 = X3.
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Triadic FCA (TCA)

I A triadic context K = (K1,K2,K3,Y ) gives rise to the three
dyadic contexts:
K(1) = (K1,K2 × K3,Y (1))
K(2) = (K2,K1 × K3,Y (2))
K(3) = (K3,K1 × K2,Y (3))
gY (1)(m, b)⇔ mY (2)(g , b)⇔ bY (3)(g ,m)⇔ (g ,m, b) ∈ Y

I A triadic concept of K is defined as a triple (A1,A2,A3)
where: A1 = (A2 × A3)(1) ⊆ K1 is the extent,
A2 = (A1 × A3)(2) ⊆ K2 is the intent,
A3 = (A1 × A2)(3) ⊆ K3 is the modus.

FCA and KDD



Triadic FCA (TCA)

Triconcept forming operators - outer closure
Φ : X → X (i) : {(aj , ak) ∈ Kj × Kk | (ai , aj , ak) ∈ Y for all ai ∈ X}

Φ
′

: Z → Z (i) : {ai ∈ Ki | (ai , aj , ak) ∈ Y for all (aj , ak) ∈ Z}

Triconcept forming operators - inner (dyadic) closure

Ψ : Xi → X (i ,j ,Ak)
i : {aj ∈ Kj | (ai , aj , ak) ∈ Y for all (ai , ak) ∈

Xi × Ak}
Ψ
′

: Xj → X (i ,j ,Ak)
j : {ai ∈ Ki | (ai , aj , ak) ∈ Y for all (aj , ak) ∈

Xj × Ak}

Existing algorithms for TCA

Trias for extracting frequent triadic concepts.
Data-Peeler for extracting frequent polyadic concepts



Biclustering of numerical data

I Given a numerical dataset (G ,M,W , I ), a bicluster is a pair
(A,B) with A ⊆ G and B ⊆ M.

I G a set of objects (rows)
I M a set of attributes (columns)
I W a set of values
I I ⊆ G ×M ×W a relation s.t. (g ,m,w) ∈ I , written

m(g) = w , means that object g takes the value w for
attribute m

I ({g2, g3, g4}, {m3,m4}) is a bicluster.

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7



Biclustering of numerical data

A Bicluster should reflect
I a local phenomena in the data: “rectangles of values”
I connectedness of values: e.g. “similar values”
I overlapping: objects/attributes may belong to several

biclusters
I a partial order, e.g. for algorithmic issues
I maximality of rectangles w.r.t. connectedness and ordering

Some types of biclusters



Biclustering of numerical data

Applications

I Collaborative filtering and recommender systems
I Finding web communities
I Discovery of association rules in databases
I Gene expression analysis, ...

Algorithms

I Iterative Row and Column Clustering Combination
I Divide and Conquer / Distribution Parameter Identification
I Greedy Iterative Search / Exhaustive Bicluster Enumeration

S. C. Madeira and A. L. Oliveira Biclustering Algorithms for Biological Data Analysis: a survey. In
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004.



Formal Concept Analysis

Can we use FCA for biclustering?

The interesting properties of concepts

I Maximality of concepts as rectangles
I Overlapping of concepts
I Specialization/generalisation hierarchy
I Synthetic representation of the data without loss of

information

This is exactly what we need for biclustering!
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An example of numerical biclusters

(A,B) is a numerical bicluster of equal values if:

mi (gj) = mk(gl ), ∀gj , gl ∈ A,∀mi ,mk ∈ B

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

The bicluster (A,B) is maximal if either:
I (A ∪ g ,B), g ∈ G\A is not a bicluster of equal values
I (A,B ∪m), m ∈ M\B is not a bicluster of equal values

FCA and KDD
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A scale for biclusters of equal values

Nominal scaling restricted to each w ∈ W

w ∈W Kw Bw Bicluster corresponding to
first concept on left list

1

m
1

m
2

m
3

m
4

m
5

g1 × ×
g2 × ×
g3 ×
g4

({g2, g3}, {m3})
({g2}, {m2,m3})
({g1}, {m1,m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

6

m
1

m
2

m
3

m
4

m
5

g1 ×
g2 ×
g3 ×
g4 ×

({g1, g2, g3}, {m5})
({g4}, {m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

... ... ... ...

FCA and KDD



Biclusters of “numerical similar values”

A similarity relation on numerical values
w1 'θ w2 ⇐⇒ |w1 − w2| ≤ θ with θ ∈ R,w1,w2 ∈W

A rectangle (A,B) is a bicluster of similar values if:
mi (gj) 'θ mk(gl ), ∀gj , gl ∈ A, ∀mi ,mk ∈ B

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

The bicluster (A,B) is maximal if no object/attribute can be added.
J. Besson, C. Robardet, L. De Raedt, J.-F. Boulicaut. Mining Bi-sets in Numerical Data, In KDID 2006:
11-23.
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TCA - framework for biclustering

Biclustering in TCA

A dyadic context with objects and attributes
+

an interordinal scaling of numerical values in K3
=

A scaled triadic context

Proposition for biclustering with TCA

(A1,A2,A3) is a triadic concept
iff

(A1,A2) is a maximal bicluster of similar values for some θ ≥ 0.
FCA and KDD
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TCA - framework for biclustering

The scale associated with interordinal scaling

J t 1
=

[0
,0

]

t 2
=

[0
,1

]

t 3
=

[0
,2

]

t 4
=

[0
,6

]

t 5
=

[0
,7

]

t 6
=

[0
,8

]

t 7
=

[0
,9

]

t 8
=

[1
,9

]

t 9
=

[2
,9

]

t 1
0
=

[6
,9

]

t 1
1
=

[7
,9

]

t 1
2
=

[8
,9

]

t 1
3
=

[9
,9

]

0 × × × × × × ×
1 × × × × × × ×
2 × × × × × × ×
6 × × × × × × ×
7 × × × × × × ×
8 × × × × × × ×
9 × × × × × × ×

FCA and KDD



TCA - framework for biclustering

The triadic context with interordinal scaling
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Scaling based on a tolerance relation

An alternative to interordinal scaling

I A tolerance relation 'θ is reflexive, symmetric, but not
transitive.

I Blocks of tolerance of a set of values W are defined as
maximal sets of pairwise similar values.

'1 0 1 2 6 7 8 9
0 × ×
1 × × ×
2 × ×
6 × ×
7 × × ×
8 × × ×
9 × ×

Blocks of tolerance
{0, 1}
{1, 2}
{6, 7}
{7, 8}
{8, 9}

Renamed classes
[0, 1]
[1, 2]
[6, 7]
[7, 8]
[8, 9]

S. O. Kuznetsov Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern
Russian Research, in Formal Concept Analysis, Foundations and Applications, 2005.

FCA and KDD
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Scaling based on a tolerance relation

I The scaling relation is a binary relation J ⊆W × C , where C
is the set of blocks of tolerance over W renamed as their
convex hulls. Then, (w , c) ∈ J iff w ∈ c .

I Trimax is an algrithm based on triadic analysis for extracting
maximal biclusters from a scaled triadic context.

I Let Y ⊆ G ×M × C be a ternary relation.
Then (g ,m, c) ∈ Y iff (m(g), c) ∈ J, or simply m(g) ∈ c ,
where J is the scale relation.
(G ,M,C ,Y ) is called the TriMax triadic scaled context.

FCA and KDD
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Scaling based on a tolerance relation

The triadic context scaled wrt a tolerance relation

FCA and KDD
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Trimax Algorithm

Trimax algorithm

I Each dyadic context corresponds to a block of tolerance and
there is no need to compute intersections of dyadic contexts.

I Each dyadic context is processed separately by a dyadic FCA
algorithm.

I A dyadic concept in a dyadic context necessarily represents a
bicluster of similar values, but we cannot be sure it is maximal.

I We need to check whether a concept is still a concept in other
dyadic contexts (when overlapping) corresponding to other
blocks of tolerance.

FCA and KDD
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Experiments

Trimax - experimental results

Nr. of max. biclusters Execution times in sec. Nr. of blocks of toler.

Density of 3-adic cont. Nr. generated of biclusters Execution time

FCA and KDD
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Experiments

Trimax - Elementary comparison

I Numerical Biset Miner (NBS-Miner) - not scalable
I Interval Pattern Structures (IPS) - less efficient than TriMax

FCA and KDD
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Conclusion on Triadic Analysis

I Triadic FCA - a formal framework for biclustering, i.e. finding
maximal biclusters with similar values.

I TriMax is efficient for computing maximal biclusters of similar
values for a given similarity relation (with tolerance blocks).

I TriMax is a correct, complete and non-redundant algorithm.

Future research
I A deeper comparison of TriMax with other existing biclustering

algorithms.
I A possible parallization of TriMax.

FCA and KDD
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Conclusion

I FCA is a well-founded mathematical theory equipped with
efficient algorithmic tools.

I FCA is a polymorphic process and addresses problems ranging
from knowledge discovery to knowledge representation and
reasoning, and pattern recognition as well.

I Times are there for various variations: pattern structures e.g.
intervals and graphs, RCA, triadic analysis.

I There is room for many improvments and especially:
−→ in taking into account domain knowledge,
−→ dealing with documents (trees) and graphs,
−→ combining FCA with numerical processes (for data mining
and reasoning).
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