

- owards a Secure
- ehavior
- /lodelling for IoT
- letworks using
- lockchain

- Jawad Ali
- Dr. Ahmad Shahrafidz Khalid
- Prof. Dr. Shahrulniza Musa

Contents

- Introduction
- Ideas
- Methodology
- Proposed Framework
- Proof of Concept Implementation
- Results and Analysis
- Future Work
- Publication record

Introduction

- IoT is a widespread technology and will inclined to a huge number of devices in the near future.
- Numerous sensors are running in a distributed way and corporate really needs to monitor their own devices.
- Cyber attacks are very serious and even bring harms to human lives.
- A recent DDOS attack (mirai) affect millions of IOT devices [6].

Ideas

- There are many researches related to authentication, authorization, access control and trust of IoT devices
- From review, some improvement can be done:-
 - The behavior of the IoT devices are to be monitored
 - Need to use decentralized approach of access control instead of centralised approach for IoT devices
 - Need to have device level trust

Problem statements

- Current centralized and decentralized security mechanisms for IoT ensure the authorization of endnodes but still there is no mechanism regarding device behavior whether it is normal or malicious.
- This research proposed a mechanism that record the dynamic behavior of IoT device and verify it for normal or malicious

Objectives

- To design a custom behavior monitor framework in IoT-Blockchain setup that can store data, monitor and classify IoT device behavior
- To apply filter on sensor-level that can stabilise output faulty or malicious sensors will be rejected
- To implement Trusted Execution Environment (TEE) on a local blockchain IoT zone that ensure integrity and confidentiality of sensitive application code and data

Literature study - Blockchain and IOT

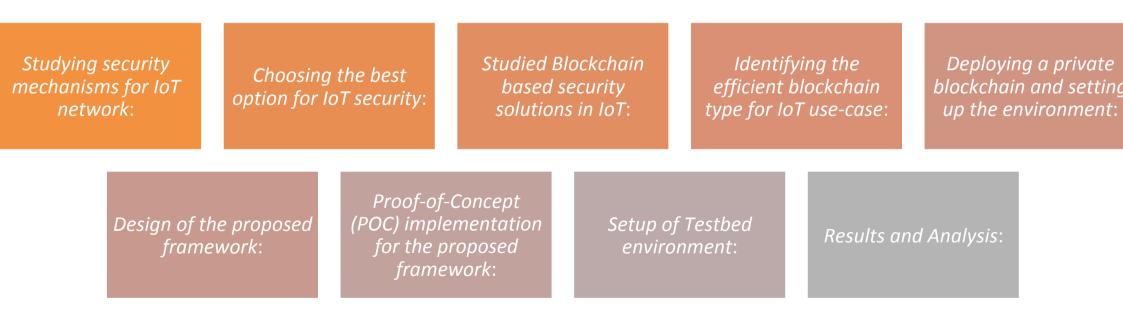
- Transactive IoT Blockchain applications [1]
- Blockchain solution for smart-home [2]
- Decentralized authentication mechanisms for IoT [3]
- Access control systems in IoT [4]

Behavioral Profiling of IoT devices

Selected Literature Study

Fingerprinting IoT device: Features extraction from network traffic.
 [7]

Machine Learning on Network Packets (i.e. TCP window size) [IoTSense: Behavioral Fingerprinting of IoT Device]


• Classification of Device Behavior in Internet of Things [8]

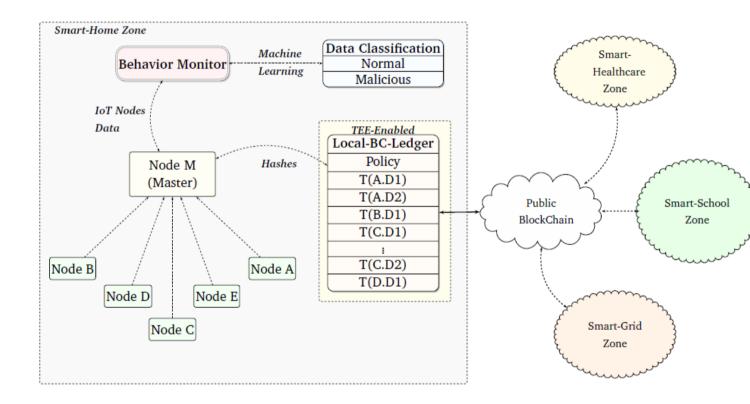
Variable: Traffic feature analysis (IP-source & destination, TCP Port etc)

[Classification of Device Behavior in Internet of Things Infrastructures: Towards Distinguishing the Abnormal From Security Threats]

- Context Extraction: Sensor data correlation in baseline data (bit level)
 [9]
- Learning of Packet frequency and size, of IoT device

Methodology

Why Choosing Fabric BC for IoT

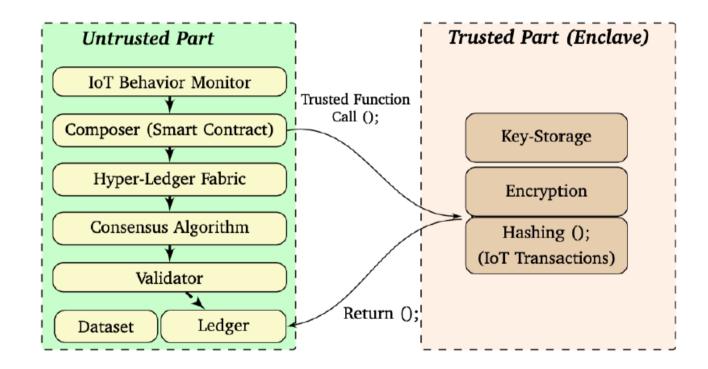

- To provide standardize BC solution for IoT.
- Permissioned BC
- Execute-order architecture which will results in efficiency.
- Pluggable consensus algorithm.

Design Goals

- Efficiency: Performance on the master node
- Accuracy: Algorithm used for optimal accuracy
- Pluggable: Design should be pluggable to other use-cases
- Updated and fresh information: Regularly updated information could well represent the device and the network
- Trustworthy mechanism
- Scalability

Entities in Proposed Framework

- Smart-Home Network
- Master node
- Blockchain


Proposed Framework (Cont)

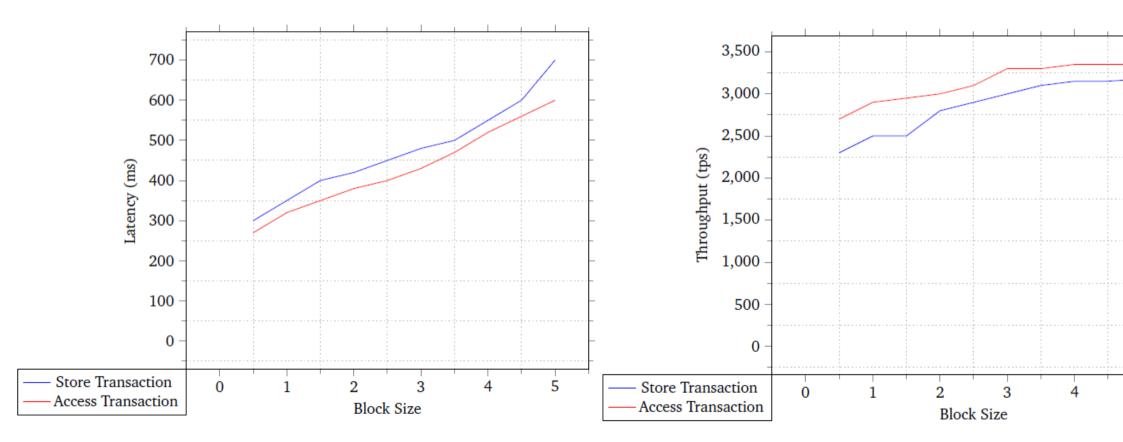
- Transactions: i.e. Communication between devices
- Initialization and System functioning: selection of master node
- Local BC setup: Hyperledger Fabric implementation
- Behavior Monitor: To record the behavior of each node and calculate the trust-level of each zone.

Behavior Monitor

- The snapshots contains *sourceIP*, *DestIP*, *MAC-address and port Number*.
- Feature Extraction: Behavior snapshots of data arrived from IoT devices i.e. protocols and host related data.
- Training Model: Deep autoencoders is used to train the model, because of its complex correlation and better accuracy.
- Continuous Monitoring: The model is continuously monitored the incoming data and label each instance.
- Compromised node should be mark i.e. such as if someone spoof IP.

IoT secure behavior capturing and storage environment using TEE

Proof of Concept Implementation


- IoT Network Setup : Raspberry pi-3 devices were used.
- BC implementation: Fabric implementation in UBUNTU
- Behavior monitor placement: Python, Keras and TensorFlow libs.
- Dataset from University of California, Irvine (UCI Machine Learning Repository) of smarthome IoT was used for training

Testing

- Apply mirai DDOS attack
- Compare with other ML algorithm SVM (Support vector machine, Isolation forest and LOF (local outlier factor)
- Compare the detection time and accuracy

Results

• Throughput and latency in terms of block size

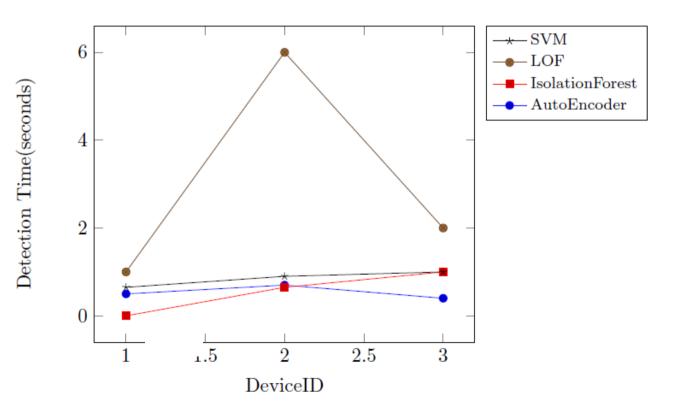
Result (cont)

- Latency with variable transaction Size in comparison
- Transaction Payload size analysis

Payload Size in (KB)	Proposed BC	Quoram BC []
1	0.225	0.325
10	0.280	0.383
20	0.320	0.384
30	0.330	0.407

The results show that the latencies increases with the increment of 10KB in payload size. The total increase

in transaction latency in QUORAM 25.23%, while in our technique the value is approximately 22.45%.


Results (Cont)

• Security Analysis

Security Requirements	Solution Provided
Confidentiality	Matching ID in Smart Contract
Integrity	Hashing Mechanism
Authorization	Endorsement Policy Checking

Result (cont)

- Accuracy TPR : 99.2%
- Algorithm's Detection time

Future Work

- To investigate/comparative study of other ML performance and accuracy
- To implement full scale POC with full verification mechanism in multiple zone

Publication Record in Scopus Count Total Papers = **12** (2018-2021)

- Blockchain-based smart-IoT trust zone measurement architecture (Conference)
- Towards Secure IoT Communication with Smart Contracts in a Blockchain Infrastructure (Journal)
- Predicting IoT service adoption towards smart mobility in Malaysia: SEM-neural hybrid pilot study (Journal)
- Towards a secure behavior modeling for IoT networks using Blockchain (Conference)
- Structural Equation Modeling for Acceptance of Cloud Computing (Conference)
- Clustering based privacy preserving of big data using fuzzification and anonymization operation (Journal)
- Realizing Macro Based Technique for Behavioral Attestation on Remote Platform (Book Chapter)

Continue

- Providing Efficient, Scalable and Privacy Preserved Verification Mechanism in Remote Attestation (Conference)
- Efficient, scalable and privacy preserving application attestation in a multi stakeholder scenario (Book Chapter)
- <u>User Behavior Assessment Towards Biometric Facial Recognition System: A SEM-</u> <u>Neural Network Approach</u> (Book Chapter)
- <u>Convergence of 5G with Internet of Things for Enhanced Privacy</u> (Book Chapter)

