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The Challenge of Network Optimization I

Increased network complexity

Networks are constantly
evolving (i.e., xG)
Network conditions change
dynamically (traffic patterns
fluctuate, failures, …)
High dimensionality, with
numerous factors to consider
(traffic volume, latency,
bandwidth allocation, other
services, etc.)
Heterogeneity

Increased network
complexity

Increased
network size

Increased
traffic

volumes

dominated
by video

Diversified
services

Various re-
quirements

Complex
traffic

patterns

Increasingly
hetero-
geneous
networks

Increased
energy

consumption
Increased

dynamicity
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The Challenge of Network Optimization II

Distributed Nature of
Networks

Networks span vast distances
(i.e., edge-cloud continuum)
Local decisions can have a
global impact
Increased difficulty in
monitoring and managing
network performance
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The Challenge of Network Optimization III

Multi-objective optimization required
Trade-offs are inevitable: e.g. minimizing costs might involve reducing
bandwidth allocation, potentially leading to degraded service quality.

Smart
building/

smart city


Cloud gaming Smart
vehicles

E-health/

Public safetyEducation Digital twin

Priority flows & No loss
Low delays

Reliability
Energy efficiency

Very low delays
Reliability & Devices' synchronicity

Smart factory

Ultra-reliable
Low latency communications

Low power
wide area

applications
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Network optimization problems - Combinatorial challenges

Many network optimization problems are combinatorial in nature.

These problems involve finding the optimal configuration or solution
from a finite set of discrete options (i.e., generally formulated using
MILP).
While some MILP problems can be solved efficiently, others are
known to be NP-hard.

Two examples of problems in networking :
Network Tomography (not necessarily combinatorial)
Network Slicing (combinatorial)
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Limitations of Conventional Methods1

Mathematical optimization have the limitation of not always being
applicable in a real context

The latency of resolution
Unsuitability in a real context

For service placement problems, the resulting latency and loss are
placement-induced measures and cannot be properly included in an
optimization problem.

Heuristics are very fast but present some difficulties in finding good
solutions

stuck on local minimums
Meta-heuristics are slow2 and they require a realistic simulation
environment

In these approaches, past experiences yield no benefit to solve new
problems . . . no learning

1PTA Quang, Y. Hadjadj-Aoul, et al., “A deep reinforcement learning approach for VNF-FG Embedding”, TNSM, 2019
2PTA Quang, …Y. Hadjadj-Aoul, “VNF-FG Embedding: A genetic algorithm approach”. Communication Systems, 2019
Y. Hadjadj (Univ Rennes) May 30, 2024 8 / 45
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The Rise of Machine Learning for Network Optimization

Machine Learning offers new possibilities
Potential benefits:

Learn from data and adapt to changing network conditions
Handle complex, multi-objective optimization problems
Offer potential for automation and faster decision-making

Y. Hadjadj (Univ Rennes) May 30, 2024 9 / 45
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AI-based resolution of networking problems

Several classes of resolution methods:

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Knowing input X and
output y (labels),
we try to find f,

y = f(X) mapping

Knowing input X, we
classify it regarding
some cost function

We learn how to take
actions (policy) to
maximize a reward

function

Possible only
when labelled

data is
available

Our past attempts (using
constrained GANs) have

not been successful

Designed to solve
decision problems

(even combinatorial)

Y. Hadjadj (Univ Rennes) May 30, 2024 10 / 45
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Motivations

Many network optimization problems are inherently based on
graph structures

Network optimization tasks like routing, network slicing, and network
tomography rely on understanding the graph topology.

Traditional machine learning techniques struggle to effectively
capture the rich relational structure and dependencies in graph
data.

Convolutional Neural Networks (CNNs) are efficient with a grid-like
structure (e.g. images).
Recurrent Neural Networks (RNNs) are well-suited for sequences (e.g.
Time series prediction).

Graph Neural Networks (GNNs) are designed for graph data:
Can learn from features of nodes and edges in a graph.
Could potentially lead to generalize the learning.

Y. Hadjadj (Univ Rennes) May 30, 2024 12 / 45
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From CNNs to GNNs I
Inspired by animal vision systems, CNNs have made significant
contributions to the field of deep learning.

Key features : layered structure with convolutional layers and
pooling layers that are effective in handling grid-like data such as
images.

The operator (kernel) is applied everywhere in the same way →
allow capturing patterns.
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From CNNs to GNNs II

With graphs we want something similar:
Considering immediate local neighborhood.

Message-passing neural network
Using that information to update further nodes features.

⃗h′bh⃗b

h⃗a

h⃗c

h⃗d h⃗e

⃗h′i = g
Ä
h⃗a, h⃗b, h⃗c, h⃗d, . . .

ä
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Desirable properties of GNNs

Fixed number of parameters (independent from input size)
Applying a graph convolution layer to graphs of arbitrary sizes.

Specifying different importances to different neighbours.
Through learnable parameters

Aggregation function should be permutation invariant (e.g. sum)
Graphs are unordered data structures: the order of a node’s
neighbors is arbitrary and does not carry any meaningful information
Consistency in representations: If the aggregation function is not
permutation invariant, different orderings of the same set of neighbors
would result in different aggregated representations for the same node.
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Network slicing
Key function: Placement of services
in a VNF-FG form

Involves not only the placement
of VNFs or CNFs1 but also
addressing a routing problem

either sequentially or
simultaneously

Need to consider several
requirements

QoS + system requirements
+ energy + services’
scalability, . . .

Substrate network

Virtual
service

Placement

Extremely large number of possibilities of placement (very large action space)
Difficulty in finding an optimal placement, except for very small network instances
(NP-hard problem)

1CNF: Cloud Native Function
Y. Hadjadj (Univ Rennes) May 30, 2024 17 / 45
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addressing a routing problem
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simultaneously

Need to consider several
requirements

QoS + system requirements
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scalability, . . .

Substrate network
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service

Placement

Extremely large number of possibilities of placement (very large action space)
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Safe DRL-based Network slicing (Traditional)

Using vanilla DDPG1 for the placement:
not suitable for very large-scale discrete action space
no guarantees

How to ensure a safe placement?
Idea: Knowing an optimal solution, one could find weights for the
placement of nodes (using First-Fit) and links (using Dijkstra) to be
optimal.
Solution: Learn to find such weights using DDPG (combining DDPG
with a Heuristic Fitting Alg.2)

Ensures that you have at least the performance of the heuristic

1T.P. Lillicrap et al., “Continuous control with deep reinforcement learning”, CoRR, vol. abs/1509.02971, DeepMind, 2015
2PTA Quang, Y. Hadjadj-Aoul, et al., “A deep reinforcement learning approach for VNF-FG Embedding”, TNSM, 2019
Y. Hadjadj (Univ Rennes) May 30, 2024 18 / 45
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HFA-DDPG1

State: K VNR
Action: Weights for the placement (for all nodes and links)

Reward: Acceptance ratio = # deployed VNR
N × 100

Environment
Actor

Network
µ

Critic
Network

Q
(1) st

(2)

(4) e(st, at, rt, st+1)
Experience pool

(5) st+1 (5) st, at, st+1minibatch

Loss function
TD

(6) rt

(6) (6)
(7)

(8)

(3) At = µ (st|θµ) + NtHeuristic
Fitting Alg.

1PTA Quang, Y. Hadjadj-Aoul, et al., “On Using Deep Reinforcement Learning for VNF-FG Placement”, NoF, 2020
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DDPG vs DDPG-HFA

Each point represents the placement of a randomly generated set of VNF-FG.

0 40 80 120 160 2000

20

40

60

80

Episodes

Ac
ce

pt
an

ce
ra

tio
%

DDPG
DDPG-HFA

The convergence of the proposed strategy almost immediately with very few episodes.
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Enhanced Exploration DDPG Model1

Environment
Actor

Network
µ

Critic
Network

Q
(1) st

(2)

(7) e(st, at, rt, st+1)
Experience pool

(8) st+1 (8) st, at, st+1minibatch

Loss function

(9) rt

(9) (9)
(10)

(11)

(3)

MCN

At = µ (st|θµ)

Action
pool

(4) (5)
(6)

Heuristic
Fitting Alg.

Enhanced
exploration

TD

1PTA Quang, Y. Hadjadj-Aoul, …, “On Using Deep Reinforcement Learning for VNF …Placement”. Demo NoF, 2020
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EEDDPG - Efficiency
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EEDDPG vs ILP
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Advantages and limits of the proposal

Advantages:
Safe strategy

Allowing to have in the worst case the performance of the considered
heuristic.

Can beat many existing approaches (not always true)
Limitations

A very costly learning process
Any topological change implies the need to learn again from scratch

Y. Hadjadj (Univ Rennes) May 30, 2024 24 / 45
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Learn to improve policies (GNNs-based)

Heuristics are not that efficient, and learning a solution from scratch, may
result in an unsafe learning

Having a baseline (e.g., using a heuristic) of the placement’s
performance is important
Ensure that the worst-case result is equal to the one obtained with
the heuristic

How to improve the placement of the heuristics ?
Idea: Training an agent to reduce the optimality gap of VNE
heuristics.
Solution: Modeling the process of improving the quality of the
heuristics as a reinforcement learning problem.

1A. Rkhami, Y. Hadjadj-Aoul, …, “Learn to improve: A novel deep reinforcement learning approach …”. CCNC, 2021
Y. Hadjadj (Univ Rennes) May 30, 2024 25 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RGCN-based state representation

Substrate network

Virtual
service

Placement

The solution is not a homogeneous
graph,

2 types of nodes, and 3 types of
links

The solution is a heterogeneous
graph,

Graph Convolutional neural
Networks (GCN) can deal only
with homogeneous graphs
Relational Graph Convolutional
Neural Networks (RGCN) was
defined as an extension of GCN
to extract features from
heterographs

The main objective is to extract
semantic

1M. Schlichtkrull, et al., “Modeling relational data with graph convolutional networks”. Springer, 2018
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RGCN-based state representation

Substrate network

Virtual
service

Placement

The solution is not a homogeneous
graph,

2 types of nodes, and 3 types of
links

The solution is a heterogeneous
graph,

Graph Convolutional neural
Networks (GCN) can deal only
with homogeneous graphs
Relational Graph Convolutional
Neural Networks (RGCN) was
defined as an extension of GCN
to extract features from
heterographs

The main objective is to extract
semantic

1M. Schlichtkrull, et al., “Modeling relational data with graph convolutional networks”. Springer, 2018
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Model description I

State (features): Heterogtaph stucture with nodes features:
For each virtual node:

1 the CPU required by the VNF
2 total bandwidth requested by the virtual links to which the node is

attached
3 a flag indicating if the VNF is the current VNF to process

For each substrate node:
1 the remaining amount of CPU
2 remaining bandwidth of links to which the substrate node is attached
3 the number of its neighbors

Y. Hadjadj (Univ Rennes) May 30, 2024 27 / 45
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Model description II

Action: applied for the current virtual node (randomly selected)
Keep the same placement
Modify it into another substrate that does not host any other VNF
from the same request

Learn a probability distribution over actions

Heterograph RGCN layers
Vector
representation
of nodes

Pooling
strategy

Vector
representation
of the current
virtual nodes

Multi layer
Perceptron

Probability
distribution
over actions

Policy network
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Model description III

Reward:
1: function getReward(bp, r2c)
2: reward← 0
3: if r2c = 0 then
4: reward← −100 ▷ unfeasable solution
5: else
6: reward← (r2c− bp)
7: end if
8: if r2c > bp then
9: bp← r2c ▷ new best score

10: end if
11: return reward, bp
12: end function
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Sequential process of Improvement

a
b c

a
b b cc

a

1
2

3

4

5
6

7
1 2

3

4

5
6

7

1 2
3

4

5
6

7

S0 S1
S2

Physical node
Virtual node
Current node
hosted by
ph_connected
v_connected

The GNNs allow here to process any graph in the input.
The output represents the targeted node.

The learning is therefore not dependent on the input → changing
the topology do not require relearning.
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First-Fit & Best-Fit improvement

First-Fit improvement Best-Fit improvement

Y. Hadjadj (Univ Rennes) May 30, 2024 31 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GNNs for Network Slicing: Promises and Challenges

Promises:
Ability to capture network graph structure and node dependencies.
Generic and transferable approach across different topologies.
Superior performance over traditional heuristics.

Challenges:
Lack of interpretability of learned representations.
Risk of over-smoothing and loss of local information

Choosing the right representation is not straightforward due to the
aggregation process, which can cause information to vanish (we
are still grappling with this issue).
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2 GNNs: a brief overview

3 Network slicing with DRLs: From Traditional Approaches to
GNN-based Strategies

4 Network tomography with GNNs

5 Conclusion
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Network tomography I

A technique used to diagnose and
troubleshoot network performance
issues.

By analyzing data collected from
various points within the network
It helps reconstructing key
performance metrics.

General idea: is to deduce what is
happening inside a network from
measurements taken from the outside.

The ultimate goal is to ensure
complete observability of the
network, enabling informed decisions
to be made and performance to be
optimised.
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Network tomography II

Main problem:
Identifying links X from paths P measurements (inverse problem)

AX = Y (1)

where A(i, j) = 1 if j belongs to path pi.

Typical situation : undetermined system (number of paths smaller
than the number of variables).

Y. Hadjadj (Univ Rennes) May 30, 2024 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Network tomography III

Sub-problems:
Determining the optimal number of monitors
Identifying the best monitors’ location.
Determining the minimal set of paths (or cycles) required to estimate
accurately links (or a subset of links in case of network slicing)
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Determining the optimal number of monitors using GNNs

Graph GNN

Genetic
Algorithm

Graph
Bipartie
Link

Identity
Monitors’

Objective
function
value

1A. Rkhami, Yassine Hadjadj Aoul, . . .: MonGNN: A neuroevolutionary-based solution …slices monitoring. LCN 2021
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Determining the optimal number of monitors I

GNN MLP

Graphs

Optimal
number

of monitors

predicted
number

of
monitors

Loss function

Learning is generalized to any graph structure (any graph as input, the
number of monitors as output).
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Determining the optimal number of monitors II

(a) n = 20 (b) n = 30 (c) n = 40 (d) n = 50

(e) n = 60 (f) n = 70

Figure: Error prediction of number of monitors with Barbasi-Albert graphs

1A. Rkhami, Yassine Hadjadj Aoul, . . .: MonGNN: A neuroevolutionary-based solution …slices monitoring. LCN 2021
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Generalizing Monitors Selection in Network Tomography
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Testing with Mandala topology with 26 nodes and 48 links

Small advantage for R-GCN.
But not always the case, as for
some use cases NN are superior !

Y. Hadjadj (Univ Rennes) May 30, 2024 41 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Changing the monitors without relearning . . .

‘
R-GCN NN
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GNNs for Network tomography: Promises and Challenges

Promises:
Generic and transferable approach across different topologies.

Predicting the number of monitors
Links identification

complicated (solved by removing the MLP to remove the dependency
to the output size)

Superior performance over traditional approaches (SVD, NN).
Challenges:

Learning links prediction with small network topologies, and
predicting links values for bigger topologies without relearning.
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Conclusion

Several ongoing contributions to progress towards more efficient
strategies.
The question addressed remains open issues.
A special thanks to my partners (Nokia Bell Labs, Orange, TDF, and
EXFO), my colleagues and my students, thanks to whom I have
been able to go further than I would have done on my own.

“We can only see a short distance ahead, but we can see
plenty there that needs to be done.”

Alan Turing
Computing machinery and intelligence, 1950
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