Shape Descriptors, Classifier fusion and other Techniques applied to Graphics Recognition and related problems

O. Ramos Terrades

April 1, 2009

▲ □ ► ▲ □ ►

Personal information

- 2001: "Maîtrise" in Mathematics by the Autonomous University of Barcelona (UAB)
- 2003: Master in Computer Vision by the Computer Vision Centre
- 2006: PhD in Computer Science by the UAB and Nancy 2 University (UN2)
- 2007: Visiting Scientist in the CVPR Unit of the Indian Statistical Institute (ISI)

2008: ATER at UN2.

Nowadays: Research fellow at Technological Institute of Computer Science (ITI in Spanish)

マロト イヨト イヨト

Personal information

Motivation Recognition Process Example of applications The End

Outline

- Source of problems
- Tasks of interest
- Research problems
- 2 Recognition Process
 - Scheme Process
 - Shape Descriptors
 - Classifier Fusion
 - Correlation Filters
- 3 Example of applications
 - Graphics Recognition
 - Script Identification
 - Symbol Spotting
 - Feature Selection
 - Interactive Handwriten Recognition

Source of problems Tasks of interest Research problems

Outline

- Source of problems
- Tasks of interest
- Research problems
- 2 Recognition Process
 - Scheme Process
 - Shape Descriptors
 - Classifier Fusion
 - Correlation Filters
- 3 Example of applications
 - Graphics Recognition
 - Script Identification
 - Symbol Spotting
 - Feature Selection
 - Interactive Handwriten Recognition ··· · · • • • •

Source of problems Tasks of interest Research problems

Technical Documents

O. Ramos Terrades

Shape Descriptors,...

Source of problems Tasks of interest Research problems

Technical Documents

Zoomed...

O. Ramos Terrades

Shape Descriptors,...

Source of problems Tasks of interest Research problems

Historical Documents

Dirección General de Securidad CONISARÍA DE INVESTIGACIÓN Y VIOLANCIA DE LA PRONTERA ORIENTAL FIGUERAS Con esta fecha ingresa en la Carcel de este partide a di posición de V.E. le subdite fr cess llamada Magdalena ADER.de 23 anos, soltera, prostituta, hi de Euclano y Juana, natural de Algres (Francia) y con domicilio ultimame te en Valencia calle de Santa Eulalia nes la cual fué expulsada de España por orden de la Dirección General de Seguridad.con fecha 4 de los corrientes habiendo sido devuelta en el dia de ayer por la Policia francesa por no ser reconocide como subdi ta de dicha nación, por carecer de toca c se de documentación. Se está gestionando con el Consul frances en ésta para que la proporcione la de cumentación necesaria para que pueda ser admitida en Franciarde cuento resulte de dichas, gestiones, daté cuenta a V.E.; con e ta fecha doy cuenta al Comisario de Valen cia por ser de este punto donde parte la expulsión. Lo quespongo en su concentento a los er que esthe convenientes; Dios guarde a V.E; muchos años. Figueras 13 de Noviembre de 1.940 El-Comisario Jefe Hanemador Civil de la Provincia Excao: Sedet Gerona.

wanter were the the me current another compresenter du ran taillemen cherrentee (camp at car per per) En le duranie de l'anne planaire hau a wernen mutter of sa disporting develop in medicanced que fi use 2: Jusaneth doit an emoles of Matsoulle

O. Ramos Terrades

Source of problems Tasks of interest Research problems

Historical Documents

handwriten text...

ordu de uncon Lon -En & Dwanik the l'anne Polonaire (camp as Carpia pue) re rendue à marseille & 13-8-40 Minum - cherton un underenered Separ le 13.8-40 à 6430 aver commenter du van taillement the new me ter mane - manyen car fine free the 13 - 8. 40 Le capit. Chikaut eds le parce ha

Source of problems Tasks of interest Research problems

- Extract information from technical and historical documents
- Find graphical information through document collections
- Script identification
- Handwriten recognition

Source of problems Tasks of interest Research problems

Open questions:

• How represent graphical entities?

イロト イヨト イヨト イヨト

æ

Source of problems Tasks of interest Research problems

Open questions:

• How represent graphical entities?

By using descriptors

• How to organise information?

Source of problems Tasks of interest Research problems

Open questions:

• How represent graphical entities?

By using descriptors

• How to organise information?

Applying indexing strategies

• How to determine which are the best descriptors?

A (10) > (10)

Source of problems Tasks of interest Research problems

Open questions:

• How represent graphical entities?

By using descriptors

• How to organise information?

Applying indexing strategies

• How to determine which are the best descriptors?

Evaluating descriptors on reference benchmarks

• How to improve performances?

A (10) > (10)

Source of problems Tasks of interest Research problems

Open questions:

• How represent graphical entities?

By using descriptors

• How to organise information?

Applying indexing strategies

• How to determine which are the best descriptors?

Evaluating descriptors on reference benchmarks

• How to improve performances?

Combining multiple classifiers

Source of problems Tasks of interest Research problems

Methods

• Definition and computation of new descriptors

イロン イヨン イヨン イヨン

Э

Source of problems Tasks of interest Research problems

Methods

- Definition and computation of new descriptors
- Indexing and structuring data

イロン イヨン イヨン イヨン

æ

Source of problems Tasks of interest Research problems

Methods

- Definition and computation of new descriptors
- Indexing and structuring data
- Performance evaluation

イロト イヨト イヨト イヨト

æ

Source of problems Tasks of interest Research problems

Methods

- Definition and computation of new descriptors
- Indexing and structuring data
- Performance evaluation
- Research on machine learning methods

∃ >

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Outline

- Source of problems
- Tasks of interest
- Research problems
- 2 Recognition Process
 - Scheme Process
 - Shape Descriptors
 - Classifier Fusion
 - Correlation Filters
 - 3 Example of applications
 - Graphics Recognition
 - Script Identification
 - Symbol Spotting
 - Feature Selection

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Scheme Process

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Recognition Process

イロン イヨン イヨン イヨン

æ

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Recognition Process

O. Ramos Terrades Shape Descriptors,...

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Shape Descriptors

Definitions

A Feature Extraction Method (FEM) is a map: $D: X \rightarrow Y$ such that:

The elements $x \in X$ are primitives.

For any $A \subset X$, $y_A = D(A)$ is a descriptor.

- ∢ ≣ ▶

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Review of Shape descriptors

Primitives:

- 1D (contour):
 - Fourier.
 - Stochastic: Autoregressive methods.
 - Curvature: Curvature Scale space (CSS).
 - Geometric invariants.
- 2D (region):
 - Polar: Polar Fourier, Fourier-Mellin, Radon/Hough, Zernike moments, Angular Radial transform (ART), ridgelets.
 - Moment-based: geometric, Zernike, Legendre.
 - Local norm based: R-Signature, Zoning, LNR.

Descriptors:

- Multiresolution:
 - Space scale: CSS
 - MRA: wavelets, ridgelets.
- Structural:

A (1) > A (1) > A

- Graph-based.
- Grammar-based.

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Ridgelets transform

Definition of ridgelets descriptors: multiresolution, 2D, polar and

O. Ramos Terrades

Shape Descriptors,...

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Combination Schemes

One descriptor is not usually enough.

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Classifier Fusion: review

Given J Classes: $\{\omega_1, \ldots, \omega_J\}$ and L classifiers for each class, which is the best way to combine them?

• Bayesian approach: Classifiers return conditional probability: $Pr(X_l|\omega_j)$ [Kitler et al. 1998]

$$Pr(\omega_j|X_1\ldots,X_L) = \frac{Pr(\omega_j)\prod_l Pr(X_l|\omega_j)}{Pr(X_1,\ldots,X_L)}$$

which explains some clasic combiantion rules:

$$\frac{1}{L}\prod_{l} \Pr(X_{l}|\omega_{j}) \quad \frac{1}{L}\sum_{l} \Pr(X_{l}|\omega_{j}) \qquad \max_{l} \Pr(X_{l}|\omega_{j})$$

イロト イヨト イヨト イヨト

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Classifier Fusion: review (contd.)

 Logistic regression. The probability Pr(ω_j|X₁,..., X_L) is fitted by an additive model of the logit function:

$$\log \frac{\Pr(\omega_j | X_1, \dots, X_L)}{1 - \Pr(\omega_j | X_1, \dots, X_L)} = \sum_l \alpha_l \Pr(\omega_j | X_l)$$

- Boosting algorithms: Friedman et al. [1998].
- Generalization of the Borda Count method: Ho et al. [1994].

イロト イヨト イヨト イヨト

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Notation and Simplifications

2 simplifications

- 2 class classifiers: $\{-1,1\}$
- linear combination: $\sum_{I} \alpha_{I} C_{I}$

Name	Notation	Domain	Meaning
Shape	S	Ω	the shape to recognize
Label	Y	$\{-1,1\}$	the class of shapes
Descriptor	X = FEM(S)	5) \mathbb{R}^d	the descriptor computed from shapes
Prediction	Z = C(X)	\mathbb{R}	the classifier output
Validation	U = YZ	\mathbb{R}	the validity of the prediction

イロト イヨト イヨト イヨト

æ

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Linear Combination of Classifiers

Problem:

With the precedent definitions of r.v. the problem of finding the optimal linear combination rule is expressed as the optimization of the following objective function:

$$\alpha_{optimal} = \arg\min_{\alpha} \Pr(\sum_{I} \alpha_{I} U_{I} < 0|S)$$

with constraints:

$$\alpha_I > 0$$
 for all I
 $\alpha_I = 1$

イロト イヨト イヨト イヨト

æ

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

IN and DN methods

- Denote $U = (U_1, ..., U_L)$.
- μ and Σ, respectively, mean and covariance matrix of U (σ²_l variance of U_l)
- $A = \sum_{I} \alpha_{I}^{\mathcal{N}}$ and $B = \sum_{I} \alpha_{I}^{D}$.

イロト イヨト イヨト イヨト

3

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

IN and DN methods

- Denote $U = (U_1, ..., U_L)$.
- μ and Σ , respectively, mean and covariance matrix of $U(\sigma_I^2)$ variance of U_I
- $A = \sum_{I} \alpha_{I}^{\mathcal{N}}$ and $B = \sum_{I} \alpha_{I}^{\mathcal{D}}$.
- U₁ are conditional independents

•
$$\alpha_I^D = \mu_I \text{ if } \sigma_I \approx 0.$$

• $\alpha_I^N = \frac{\mu_I}{\sigma_I}, \text{ otherwise.}$
 $\alpha_{op} = \lambda_N \alpha^N + \lambda_D \alpha^D$
 $\lambda = \begin{cases} \left(\frac{A-B}{A^2}, \frac{1}{A}\right) & \text{if } A > B\\ \left(0, \frac{1}{B}\right) & \text{if } A \leq B \end{cases}$

イロン イヨン イヨン イヨン

æ

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

IN and DN methods

- Denote $U = (U_1, ..., U_L)$.
- μ and Σ , respectively, mean and covariance matrix of $U(\sigma_I^2)$ variance of U_I
- $A = \sum_{I} \alpha_{I}^{\mathcal{N}}$ and $B = \sum_{I} \alpha_{I}^{\mathcal{D}}$.
- U₁ are conditional independents

•
$$\alpha_I^D = \mu_I$$
 if $\sigma_I \approx 0$.
• $\alpha_I^N = \frac{\mu_I}{\sigma_I}$, otherwise.
 $\alpha_{op} = \lambda_N \alpha^N + \lambda_D \alpha^D$

$$\lambda = \begin{cases} \left(\frac{A-B}{A^2}, \frac{1}{A}\right) & \text{if } A > B\\ \left(0, \frac{1}{B}\right) & \text{if } A \le B \end{cases}$$

U_l are dependents to each other

Minimize the object function:

$$\phi(\alpha) = \left\langle \frac{\alpha}{\alpha^t \Sigma \alpha}, \mu \right\rangle$$

Subject to the constraints:

$$\begin{cases} \alpha_I > 0 & \text{for all } I \\ \sum_I \alpha_I = 1 & \text{for all } I \end{cases}$$

O. Ramos Terrades

Shape Descriptors,...

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Correlation Filters

- Collaboration with Prof. Djemel Ziou (univ Sherbrooke, Canada) and S. Tabbone (univ. Nancy 2 - LORIA, France)
- Idea: Apply correlation filters to CBIR problems.
- Related work: Face and Object Identification, MACE filters

・ロト ・同ト ・ヨト ・ヨト

Scheme Process Shape Descriptors Classifier Fusion Correlation Filters

Correlation Filters

- Collaboration with Prof. Djemel Ziou (univ Sherbrooke, Canada) and S. Tabbone (univ. Nancy 2 - LORIA, France)
- Idea: Apply correlation filters to CBIR problems.
- Related work: Face and Object Identification, MACE filters

Variational approach: Main Idea

K semantic classes: 1, ..., K; $v^{i,k}$ image collection, h_k correlation filters.

$$\max \frac{\int_{-w}^{w} v^{i,k} \circledast h_k}{\int v^{i,k} \circledast h_k}$$

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

< 🗗 🕨

Outline

- Source of problems
- Tasks of interest
- Research problems
- 2 Recognition Process
 - Scheme Process
 - Shape Descriptors
 - Classifier Fusion
 - Correlation Filters
- 3 Example of applications
 - Graphics Recognition
 - Script Identification
 - Symbol Spotting
 - Feature Selection
 - Interactive Handwriten Recognition

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

Example of applications

- Use of shape descriptors and Classifier fusion methods to Graphics (segmented) recognition problems
- Use of low level features and SVM classifiers to Thai-English script identification
- Use of Correlation filters to CBIR problems: symbol spotting.

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

Example of applications

- Use of shape descriptors and Classifier fusion methods to Graphics (segmented) recognition problems
- Use of low level features and SVM classifiers to Thai-English script identification
- Use of Correlation filters to CBIR problems: symbol spotting.
- Use of Genetic algorithms for feature selection
- Shape context and Video Google for symbol spotting

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

Graphics Recognition

Validation on benchmark datasets:

• Graphics (GREC):

• and digits (MNIST):

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

▲ 同 ▶ ▲ 臣

Script Identification

- Collaboration with Sukalpa Chanda, PhD candidate, and Umapada Pal (ISI)
- Use of 7 features to train two-class SVM

Exemple

และร่วมถวายพระพรเนื่องในวโรกาสพระราชสมภพของสมเด็จพระบรมราชินีนาถ ใครที่เป็นอเมริกันชิติเช่นมีสิทธิ์ออกเสียงเลือกตั้ง ทางสมาคม American group ขอเชิญพบปะกับผู้สมัครทุกระดูับ ตั้งแต่ระดับสมาชิกสภูา

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

Symbol Spotting

- Thi-Oanh Nguyen, PhD candidate, and S. Tabbone (LORIA)
- SCIP: Shape Context of Interest Points and Video Google.
- Symbol spoting: detect and localise non-segmented symbols

Exemple

O. Ramos Terrades

Shape Descriptors,...

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

イロト イヨト イヨト イヨト

Feature Selection

- Hassan Chouaib, PhD candidate, S. Tabbone (LORIA) and Prof. N. Vincent (Paris 5)
- Combine Genetic Algorithms (GA) and boosting-based classifiers.
- Use of R-Signature, Zernike moments and pixel images as shape descriptors.

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

イロン 不同と 不同と 不同と

æ

GiDoc

Graphics Recognition Script Identification Symbol Spotting Feature Selection Interactive Handwriten Recognition

GiDoc

ð Document frenssription 🔅					
Block Line Lines to show	200m (100)%	Key Bindings Text Font Sans 16			
A MOVE to abore	Mr. Gaitske	Il from			
nominating any w	ione Labour	life Peers			
is to be made	_ at a meet	ing at Labour			
A MOVE to plan Mr. Gaitskell from					
² nominating any more Labour life Bee					
is to be made at a meeting at Labour					
and a		😮 Çancelar 🕼 Aceptar			

- Offers an interactive environment
- Usefull for groundtruthing
- based on gimp
- HMM are estimated by the means of HTK engine
- Language models estimated by SRILM

<ロ> <同> <同> <同> < 同>

-∢ ≣ ≯

Before concluding...

Any question?

O. Ramos Terrades Shape Descriptors,...

・ロン ・四と ・ヨン ・ヨン

æ