
Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Mesurer la similarité de graphes

Christine Solnon

LIRIS, UMR 5205 CNRS / Université Lyon 1

Avec la participation de :

Pierre-Antoine Champin, LIRIS, Lyon

Vianney le Clément, UCL, Louvain la neuve

Guillaume Damiand, LIRIS, Lyon

Yves Deville, UCL, Louvain la neuve

Colin de la Higuera, LINA, Nantes

Jean-Christophe Janodet, LHC, Saint Etienne

Olfa Sammoud, LIRIS, Lyon

Sébastien Sorlin, LIRIS, Lyon

Stéphane Zampelli, UCL, Louvain la neuve

Séminaire du LI3
Novembre 2009

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Graph matching problems

Why matching graphs ?

Many applications require to measure object similarity
 Classification, Search by example, Case-based Reasoning, ...

Graphs are often used to model objects
 Images, Molecules, Documents, Design objects, ...

Graph similarity is measured by matching their vertices

What is a matching ?

A matching of G1 =(V1,E1) and G2 =(V2,E2) is a relation m⊆V1×V2
 (u1,u2) ∈ m⇒ vertex u1 is matched to vertex u2

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Graph matching problems

Why matching graphs ?

Many applications require to measure object similarity
 Classification, Search by example, Case-based Reasoning, ...

Graphs are often used to model objects
 Images, Molecules, Documents, Design objects, ...

Graph similarity is measured by matching their vertices

What is a matching ?

A matching of G1 =(V1,E1) and G2 =(V2,E2) is a relation m⊆V1×V2
 (u1,u2) ∈ m⇒ vertex u1 is matched to vertex u2

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Bijection f : V1 → V2 that preserves all edges
Isomorphic-complete problem... rather easy actually

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Injection f : V1 → V2 that preserves all pattern edges
NP-complete problem... still tractable for ”medium” size graphs

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Univalent matching that preserves as many edges as possible
NP-hard problem... untractable for complete approaches

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

Univalent matching that minimizes edition costs
NP-hard problem... untractable for complete approaches

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

acoté acoté acoté
1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

acoté acoté acoté
poutre

I
poutre

I
poutre

I
poutre

I
poutre poutre poutre poutre

UUUU

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Well known examples of graph matching problems

Graph Isomorphism Equivalence

Subgraph Isomorphism Inclusion

Maximum common subgraph Intersection

Graph Edit Distance Best univalent matching

Extended Graph Edit Distance Best multivalent matching

acoté acoté acoté
1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

acoté acoté acoté
poutre

I
poutre

I
poutre

I
poutre

I
poutre poutre poutre poutre

UUUU

Multivalent matching that minimizes edition costs
NP-hard problem... untractable for complete approaches

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Overview of the talk

Filtering algorithms for (sub)graph isomorphism
 joint work with Y. Deville, S. Sorlin, and S. Zampelli

Polynomial algorithm for plane subgraph isomorphism
 joint work with G. Damiand, C. de la Higuera, and J.-C.
Janodet

Heuristic approaches for multivalent matching problems
 joint work with P.-A. Champin, O. Sammoud, and S. Sorlin

Constraint-based graph matching
 joint work with V. le Clément, and Y. Deville

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Filtering algorithms for (sub)graph isomorphism

Basic principle of ”branch & filter” approaches

Explore all possible matchings by structuring them in a tree
 Each node corresponds to a partial injective matching

At each step: filter the set of candidate matchings
 Remove (u, v) ∈ Np × Nt such that u cannot be matched to v

Filtering for (sub)graph isomorphism

Propagation of all diff constraints [Régin 93] in O(n2
pn2

t)

Propagation of edge constraints

Graph isomorphism degree-based labeling
(Nauty, Saucy, IDL)
Subgraph isomorphism local all diff

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Degree-based labeling for graph isomorphism: Example

A

CB D E

F

G

αG : Initial labeling degree
A,B,D → 4 ⇒
C,E ,F ,G → 3 ⇒

α′G : First labeling extension
A → .{(2,), (2,)}
E ,F → .{(2,), (1,)}
B,D → .{(1,), (3,)}
C → .{(3,)}
G → .{(1,), (2,)}

relabel E ,F ,B, and D

α′′G : Second labeling extension
E → .{(1,), (1,), (1,)}
F → .{(2,), (1,)}
B → .{(1,), (2,), (1,), (1,)}
D → .{(1,), (1,), (2,)}

All different labels⇒ stop

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Degree-based labeling for graph isomorphism: Example

A

CB D E

F

G

αG : Initial labeling degree
A,B,D → 4 ⇒
C,E ,F ,G → 3 ⇒

α′G : First labeling extension
A → .{(2,), (2,)}
E ,F → .{(2,), (1,)}
B,D → .{(1,), (3,)}
C → .{(3,)}
G → .{(1,), (2,)}

relabel E ,F ,B, and D

α′′G : Second labeling extension
E → .{(1,), (1,), (1,)}
F → .{(2,), (1,)}
B → .{(1,), (2,), (1,), (1,)}
D → .{(1,), (1,), (2,)}

All different labels⇒ stop

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Degree-based labeling for graph isomorphism: Example

A

CB D E

F

G

αG : Initial labeling degree
A,B,D → 4 ⇒
C,E ,F ,G → 3 ⇒

α′G : First labeling extension
A → .{(2,), (2,)} ⇒
E ,F → .{(2,), (1,)} ⇒
B,D → .{(1,), (3,)} ⇒
C → .{(3,)} ⇒
G → .{(1,), (2,)} ⇒
 relabel E ,F ,B, and D

α′′G : Second labeling extension
E → .{(1,), (1,), (1,)}
F → .{(2,), (1,)}
B → .{(1,), (2,), (1,), (1,)}
D → .{(1,), (1,), (2,)}

All different labels⇒ stop

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Degree-based labeling for graph isomorphism: Example

A

CB D E

F

G

αG : Initial labeling degree
A,B,D → 4 ⇒
C,E ,F ,G → 3 ⇒

α′G : First labeling extension
A → .{(2,), (2,)} ⇒
E ,F → .{(2,), (1,)} ⇒
B,D → .{(1,), (3,)} ⇒
C → .{(3,)} ⇒
G → .{(1,), (2,)} ⇒
 relabel E ,F ,B, and D

α′′G : Second labeling extension
E → .{(1,), (1,), (1,)}
F → .{(2,), (1,)}
B → .{(1,), (2,), (1,), (1,)}
D → .{(1,), (1,), (2,)}

All different labels⇒ stop

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Degree-based labeling for graph isomorphism: Example

A

CB D E

F

G

αG : Initial labeling degree
A,B,D → 4 ⇒
C,E ,F ,G → 3 ⇒

α′G : First labeling extension
A → .{(2,), (2,)} ⇒
E ,F → .{(2,), (1,)} ⇒
B,D → .{(1,), (3,)} ⇒
C → .{(3,)} ⇒
G → .{(1,), (2,)} ⇒
 relabel E ,F ,B, and D

α′′G : Second labeling extension
E → .{(1,), (1,), (1,)}
F → .{(2,), (1,)}
B → .{(1,), (2,), (1,), (1,)}
D → .{(1,), (1,), (2,)}

All different labels⇒ stop

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Properties

Correction: 2 nodes with different labels cannot be matched by
an isomorphism function

Time complexity of filtering (worst case): O(|V |3 log |V |)

 Solve instances with a few thousands of nodes in a second or so

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Filtering for subgraph isomorphism: example

Degree-based filtering:

 2 and 4 cannot be matched to C, E , F and G

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Filtering for subgraph isomorphism: example

Neighborhood all-diff filtering: look-ahead step

1 may be matched to D only if its neighbors may be matched to
different neighbors of D

C

2

3

4

A

E

F

Both 2 and 4 can only be matched to A
 1 cannot be matched to D

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Filtering for subgraph isomorphism: example

Neighborhood all-diff filtering: forward-checking step

Once 1 is matched to A, remove couples that can’t be matched

E

2

3

4

C

B

D

2 and 4 can only be matched to B and D
 3 cannot be matched to B and D

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Properties

Correction: does not remove solutions

Time complexity of filtering (worst case): O(|Vp| · |Vt | · d9/2)

(Algorithm of Hopcroft and Karp)

 Solve instances with a few hundreds of nodes in a minute or so

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Overview of the talk

Filtering algorithms for (sub)graph isomorphism
 joint work with Y. Deville, S. Sorlin, and S. Zampelli

Polynomial algorithm for plane subgraph isomorphism
 joint work with G. Damiand, C. de la Higuera, and J.-C.
Janodet

Heuristic approaches for Multivalent matching problems
 joint work with P.-A. Champin, O. Sammoud, and S. Sorlin

Constraint-based graph matching
 joint work with V. le Clément, and Y. Deville

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Motivations

Search patterns in images

Model images graphs (RAGs, Delaunay triangulation, ...)
Search patterns subgraph isomorphism
NP-complete in the general case... but do we consider the right
problem when graphs model images ?

Is there a subgraph isomorphism ???

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Motivations

Search patterns in images

Model images graphs (RAGs, Delaunay triangulation, ...)
Search patterns subgraph isomorphism
NP-complete in the general case... but do we consider the right
problem when graphs model images ?

Yes but... the two graphs look rather different !
Graphs modeling images are planar and are embedded in planes.
 Let us compare planar embeddings of graphs !

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Motivations

Search patterns in images

Model images graphs (RAGs, Delaunay triangulation, ...)
Search patterns subgraph isomorphism
NP-complete in the general case... but do we consider the right
problem when graphs model images ?

Yes but... the two graphs look rather different !
Graphs modeling images are planar and are embedded in planes.
 Let us compare planar embeddings of graphs !

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

2D Combinatorial maps

From plane graphs to 2D combinatorial maps

Each edge is decomposed into 2 linked darts

Faces are defined by dart successions

Combinatorial Plane
mapgraph

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Algorithm for submap isomorphism

function testSubIsomorphism(M,M ′)

Input: 2 open connected maps M and M ′

Output: returns true iff M is isomorphic to a submap of M ′

Choose d0 ∈ D

For every dart d ′0 ∈ D′ do :

If traverseAndMatch(M,M ′,d0,d ′0)
then return true

return false

Complexity in O(|D| · |D′|)

There are at most |D′| map traversals

Each traversal is in O(|D|)

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � wrong � initial darts

1
1

1

Two different pattern darts are matched to a same target dart
 stop and try another dart

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � wrong � initial darts

1
1

2

3

2

3

2

3

Two different pattern darts are matched to a same target dart
 stop and try another dart

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � wrong � initial darts

2

1
1

2

2

3

3

4

4

4

Two different pattern darts are matched to a same target dart
 stop and try another dart

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � good � initial darts

1 1

1

All darts of the pattern are discovered and the matching is a
subisomorphism
 testSubIso returns true

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � good � initial darts

2

3

1 1

3

2

32

All darts of the pattern are discovered and the matching is a
subisomorphism
 testSubIso returns true

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � good � initial darts

1 1

3
3

2 2 4

2

44

All darts of the pattern are discovered and the matching is a
subisomorphism
 testSubIso returns true

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � good � initial darts

1 1

2 2

2

3
3

4 4

5

55

All darts of the pattern are discovered and the matching is a
subisomorphism
 testSubIso returns true

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example with � good � initial darts

1 1

2 2

2

3
3

4 45 5

6

6 6

7

7

7

All darts of the pattern are discovered and the matching is a
subisomorphism
 testSubIso returns true

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

From plane graphs to combinatorial maps (1/2)

...or how to use submap isomorphism to solve some subgraph
isomorphism problems...

Compact plane subgraph isomorphism

Plane graph embedding of a planar graph in a plane
G1 and G2 are plane-isomorphic if there exists a bijection
f : N1 → N2 which preserves edges and topology
G1 is a compact plane subgraph of G2 if G1 is plane isomorphic
to a compact subgraph
 remove nodes and edges adjacent to the unbounded face

5

4 3

1

6

2

5

4 3

1

6

2

Yes No

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

From plane graphs to combinatorial maps (2/2)

Precondition for using test(Sub)Isomorphism(M,M ′)

M and M ′ must be connected
 plane graphs must be connected...
...and their unbounded face must be bounded by an elementary cycle

5

4 3

1

6

2

5

4 3

1

6

2

Yes No

 a polynomial algorithm to solve compact plane subgraph
isomorphism when unbounded faces are bounded by elementary
cycles...

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Overview of the talk

Filtering algorithms for (sub)graph isomorphism
 joint work with Y. Deville, S. Sorlin, and S. Zampelli

Polynomial algorithm for plane subgraph isomorphism
 joint work with G. Damiand, C. de la Higuera, and J.-C.
Janodet

Heuristic approaches for multivalent matching problems
 joint work with P.-A. Champin, O. Sammoud, and S. Sorlin

Constraint-based graph matching
 joint work with V. le Clément, and Y. Deville

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Motivations for multivalent matchings

1 2 3 4
a b c d

e f 5

Object 1 Object 2

Allow multivalent matchings
 ’e’ and ’f’ should be matched to ’5’

Similarity wrt [Tversky 77] : sim(a,b) = f (car(a)∩car(b))
f (car(a)∪car(b))

 Identify common features

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Describing objects by labeled graphs

Let LV and LE be sets of node and edge labels
Labeled graph = 〈V , rV , rE〉 such that

V nodes
rV ⊆ V × LV nodes labeling
rE ⊆ V × V × LE edge labeling

rV ∪ rE graph features

1 2 3 4a b c d

e f 5

Object 1 Object 2

Edge labels: LE = {next,on}
rE = {(a,b,next), (b, c,next), (c,d ,next),

(a,e,on), (b,e,on), (c, f ,on), (d , f ,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Describing objects by labeled graphs

Let LV and LE be sets of node and edge labels
Labeled graph = 〈V , rV , rE〉 such that

V nodes
rV ⊆ V × LV nodes labeling
rE ⊆ V × V × LE edge labeling

rV ∪ rE graph features

1 2 3 4a b c d

e f 5

Object 1 Object 2

a b c d

e f

Nodes: V = {a,b, c,d ,e, f}
rV = {(a,beam), (b,beam), (c,beam), (d ,beam),

(a, I), (b, I), (c, I), (d , I), (e,wall), (f ,wall)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Describing objects by labeled graphs

Let LV and LE be sets of node and edge labels
Labeled graph = 〈V , rV , rE〉 such that

V nodes
rV ⊆ V × LV nodes labeling
rE ⊆ V × V × LE edge labeling

rV ∪ rE graph features

1 2 3 4a b c d

e f 5

Object 1 Object 2

a

I
poutre

b

poutre
I

c d

poutre
I

poutre
I

mur mure f

Node labeling: LV = {beam, I,wall}
rV = {(a,beam), (b,beam), (c,beam), (d ,beam),

(a, I), (b, I), (c, I), (d , I), (e,wall), (f ,wall)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Describing objects by labeled graphs

Let LV and LE be sets of node and edge labels
Labeled graph = 〈V , rV , rE〉 such that

V nodes
rV ⊆ V × LV nodes labeling
rE ⊆ V × V × LE edge labeling

rV ∪ rE graph features

1 2 3 4a b c d

e f 5

Object 1 Object 2

a

I
poutre

b

poutre
I

c d

poutre
I

poutre
I

mur mur

sursur sur sur

e f

acoté acoté acoté

Edge labeling: LE = {next,on}
rE = {(a,b,next), (b, c,next), (c,d ,next),

(a,e,on), (b,e,on), (c, f ,on), (d , f ,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

acoté acoté acoté
1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

acoté acoté acoté
poutre

I
poutre

I
poutre

I
poutre

I
poutre poutre poutre poutre

UUUU

m = {(a,1), (b,2), (c,3), (d,4), (e,5), (f,5)}
G1 um G2 = { (a,beam), (1,beam), (b,beam), (2,beam), (a,b,next),
(1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

acoté acoté acoté
1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

acoté acoté acoté
I

poutre
I

poutre
I

poutre
I

poutre poutre poutre
UUUU

poutre poutre

m = {(a,1),
G1 um G2 = { (a,beam), (1,beam),
(1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

acoté acoté
1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

acoté acoté
I I

poutre
I

poutre
I

poutre poutre
UUUU

poutre poutre
acoté

poutre
acoté

poutre

m = {(a,1), (b,2),
G1 um G2 = { (a,beam), (1,beam), (b,beam), (2,beam), (a,b,next),
(1,2,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

acoté
1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

acoté
I I I

poutre
I

poutre
UUUU

poutre poutre
acoté

poutre
acoté

poutre
acoté

poutre
acoté

poutre

m = {(a,1), (b,2), (c,3),
G1 um G2 = { (a,beam), (1,beam), (b,beam), (2,beam), (a,b,next),
(1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

1 2 3 4

5

sursur sur sur

mur

a b c d

mur mur

sursur sur sur

e f

I I I I UUUU
poutre poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

m = {(a,1), (b,2), (c,3), (d,4),
G1 um G2 = { (a,beam), (1,beam), (b,beam), (2,beam), (a,b,next),
(1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

1 2 3 4

5

sur sur

a b c d

mur

sur sur

e f

I I I I UUUU
poutre poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

sur sur

mur

sur sur

mur

m = {(a,1), (b,2), (c,3), (d,4), (e,5),
G1 um G2 = { (a,beam), (1,beam), (b,beam), (2,beam), (a,b,next),
(1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Common features wrt a matching

G1 um G2 = {c ∈ rV1 ∪ rE1 ∪ rV2 ∪ rE2/c common to G1 and G2 via m}

1 2 3 4

5

a b c d

e f

I I I I UUUU
poutre poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

acoté
poutre

sur sur

mur

sur sur

murmur

sursur sur sur

m = {(a,1), (b,2), (c,3), (d,4), (e,5), (f,5)}
G1 um G2 = { (a,beam), (1,beam), (b,beam), (2,beam), (a,b,next),
(1,2,next), (c,beam), (3,beam), (b,c,next), (2,3,next),
(d,beam), (4,beam), (c,d,next), (3,4,next),
(e,wall), (5,wall), (a,e,on), (b,e,on), (1,5,on), (2,5,on),
(f,wall), (c,f,on), (d,f,on), (3,5,on), (4,5,on)}

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m
rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2
f = function that quantifies features
splits(m) = set of nodes that are matched to more than one node
g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m

rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2
f = function that quantifies features
splits(m) = set of nodes that are matched to more than one node
g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m
rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2

f = function that quantifies features
splits(m) = set of nodes that are matched to more than one node
g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m
rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2
f = function that quantifies features

splits(m) = set of nodes that are matched to more than one node
g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m
rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2
f = function that quantifies features
splits(m) = set of nodes that are matched to more than one node

g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m
rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2
f = function that quantifies features
splits(m) = set of nodes that are matched to more than one node
g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Similarity of 2 graphs

Similarity of G1 and G2 induced by a matching m

simm(G1,G2) = f (G1umG2)−g(splits(m))
f (rV1∪rE1∪rV2∪rE2)

G1 um G2 = features common to G1 and G2 via m
rV1 ∪ rE1 ∪ rV2 ∪ rE2 = set of all features of G1 and G2
f = function that quantifies features
splits(m) = set of nodes that are matched to more than one node
g = function that quantifies splits

Similarity of G1 and G2

sim(G1,G2) = maxm⊆V1×V2simm(G1,G2)

Measuring the similarity of G1 and G2 find m ⊆ V1 × V2 that
maximizes score(m) = f (G1 um G2)− g(splits(m))

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Computing the similarity of two graphs

A very hard problem...

Goal = find m ⊆ V1 × V2 that maximizes score(m)

NP-hard problem 2|V1|·|V2| combinations

Heuristic approaches

Greedy: quickly build a rather good matching

Tabu: iteratively improves a matching by local perturbations

ACO: use pheromone to guide greedy constructions

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Computing the similarity of two graphs

A very hard problem...

Goal = find m ⊆ V1 × V2 that maximizes score(m)

NP-hard problem 2|V1|·|V2| combinations

Heuristic approaches

Greedy: quickly build a rather good matching

Tabu: iteratively improves a matching by local perturbations

ACO: use pheromone to guide greedy constructions

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Greedy algorithm

Greedy construction of a matching m

m← ∅
Iterate

Cand ← V1 × V2 −m
Choose (u1,u2) ∈ Cand that maximizes score
 break ties with a look-ahead function

Exit when score(m ∪ {(u1,u2)}) < score(m)

m← m ∪ {(u1,u2)}

End iterate

Properties

Polynomial complexity O((|V1| · |V2|)2)

Non optimal
Non deterministic may be iterated

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Reactive tabu search

Exploration of the neighborhood of a matching m
m← Greedy(G1,G2)

While termination condition not reached

Choose m′ ∈ Neighborhood(m) such that
Moving from m to m′ isn’t “Tabu”
m′ maximizes the score function

m← m′

Make the move from m′ to m “Tabu”

End while

Neighborhood(m) = matchings obtained by adding or removing a
couple of nodes to m
Tabu principle Prevent the search from cycling

Memorize the k last moves in a tabu list

k determines the intensification/diversification balance
Decrease k Intensify
Increase k Diversify

Reactive search Dynamically adjust k

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Reactive tabu search

Exploration of the neighborhood of a matching m
m← Greedy(G1,G2)

While termination condition not reached

Choose m′ ∈ Neighborhood(m) such that
Moving from m to m′ isn’t “Tabu”
m′ maximizes the score function

m← m′

Make the move from m′ to m “Tabu”

End while

Neighborhood(m) = matchings obtained by adding or removing a
couple of nodes to m

Tabu principle Prevent the search from cycling
Memorize the k last moves in a tabu list

k determines the intensification/diversification balance
Decrease k Intensify
Increase k Diversify

Reactive search Dynamically adjust k

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Reactive tabu search

Exploration of the neighborhood of a matching m
m← Greedy(G1,G2)

While termination condition not reached

Choose m′ ∈ Neighborhood(m) such that
Moving from m to m′ isn’t “Tabu”
m′ maximizes the score function

m← m′

Make the move from m′ to m “Tabu”

End while

Neighborhood(m) = matchings obtained by adding or removing a
couple of nodes to m

Tabu principle Prevent the search from cycling
Memorize the k last moves in a tabu list

k determines the intensification/diversification balance
Decrease k Intensify
Increase k Diversify

Reactive search Dynamically adjust k

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

ACO algorithm

Use pheromone to learn for good matchings

τ(u1,u2) = past experience wrt matching u1 with u2

Greedy construction of a matching m
m← ∅
While m can be improved

Cand ← {(u1,u2) that improve m}
Choose (u1,u2) ∈ Cand / proba. depending on

Pheromone factor past experience of the colony
Heuristic factor score function

m← m ∪ {(u1,u2)}

Pheromone updating step
Every nbAnts constructions:

Evaporate (multiply by ρ ∈]0; 1[)
Reward the best matching found

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Experimental comparison

Benchmarks

Test suite : randomly generated instances

Test suite 2: Instances of [Boeres et al. 2004]

Conclusion

For short CPU time limits: Tabu is better

For longer CPU time limits: ACO is (slightly) better

Both approaches are rather ”robust”

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Overview of the talk

Filtering algorithms for (sub)graph isomorphism
 joint work with Y. Deville, S. Sorlin, and S. Zampelli

Polynomial algorithm for plane subgraph isomorphism
 joint work with G. Damiand, C. de la Higuera, and J.-C.
Janodet

Heuristic approaches for multivalent matching problems
 joint work with P.-A. Champin, O. Sammoud, and S. Sorlin

Constraint-based graph matching
 joint work with V. le Clément, and Y. Deville

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Motivation

Dedicated matching algorithms

Customized algorithm to solve a specific problem: efficient...
but cannot be used to solve a slightly different matching problem

Constraint-based graph matching

a high level modeling language for graph matching

a synthesizer that generates an efficient algorithm from the
model
 reuse state-of-the-art approaches, combine them, ...

Generic matching algorithms

May be used to solve any matching problem... but not always as
efficient as dedicated approaches for specific matching problems

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Motivation

Dedicated matching algorithms

Customized algorithm to solve a specific problem: efficient...
but cannot be used to solve a slightly different matching problem

Constraint-based graph matching

a high level modeling language for graph matching

a synthesizer that generates an efficient algorithm from the
model
 reuse state-of-the-art approaches, combine them, ...

Generic matching algorithms

May be used to solve any matching problem... but not always as
efficient as dedicated approaches for specific matching problems

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Characteristics of our approach

Written in Comet

Supports both CP, CBLS, and MIP

Object-Oriented

Easy to use as a black-box

Easy modeling of classical problems

May be used to model new problems
 Handling specificities through additional constraints

The box may be opened and is easily extensible

Add new constraints

Add new solving algorithms, heuristics

 Extend the synthesizer

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Modeling language for graph matching

Constraints on the cardinality of the matching

bijective (1,1), injective (1,0..1), univalent (0..1,0..1), or
multivalent (0..n,0..n)

hard constraints: must be satisfied

soft constraints: should be satisfied as much as possible

Constraints on edges

hard constraints: edges must be matched

soft constraints: maximize the number of matched edges

Constraints on labels (in case of labeled graphs))

hard: matched components must have identical labels

soft: maximize the similarity of matched component labels

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example 1: Graph isomorphism

Declare 2 graph objects g1 and g2 and a matching m

bool[,] adj1 = ...
bool[,] adj2 = ...
SimpleGraph<Mod> g1(adj1);
SimpleGraph<Mod> g2(adj2);
Matching<Mod> m(g1,g2);

Post cardinality constraints on m bijective matching (1,1)

m.post(cardMatch(g1.getAllNodes(), 1, 1));
m.post(cardMatch(g2.getAllNodes(), 1, 1));

Post constraints to ensure edge matching
m.post(matchedToSomeEdges(g1.getAllEdges()));
m.post(matchedToSomeEdges(g2.getAllEdges()));

Ask the synthesizer to create the solver... and search a solution
m.close();
DefaultGMSynthesizer synth();
GMSolution<Mod> sol = synth.solveMatching(m);

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example 1: Graph isomorphism

Declare 2 graph objects g1 and g2 and a matching m

bool[,] adj1 = ...
bool[,] adj2 = ...
SimpleGraph<Mod> g1(adj1);
SimpleGraph<Mod> g2(adj2);
Matching<Mod> m(g1,g2);

Post cardinality constraints on m bijective matching (1,1)

m.post(cardMatch(g1.getAllNodes(), 1, 1));
m.post(cardMatch(g2.getAllNodes(), 1, 1));

Post constraints to ensure edge matching
m.post(matchedToSomeEdges(g1.getAllEdges()));
m.post(matchedToSomeEdges(g2.getAllEdges()));

Ask the synthesizer to create the solver... and search a solution
m.close();
DefaultGMSynthesizer synth();
GMSolution<Mod> sol = synth.solveMatching(m);

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example 1: Graph isomorphism

Declare 2 graph objects g1 and g2 and a matching m

bool[,] adj1 = ...
bool[,] adj2 = ...
SimpleGraph<Mod> g1(adj1);
SimpleGraph<Mod> g2(adj2);
Matching<Mod> m(g1,g2);

Post cardinality constraints on m bijective matching (1,1)

m.post(cardMatch(g1.getAllNodes(), 1, 1));
m.post(cardMatch(g2.getAllNodes(), 1, 1));

Post constraints to ensure edge matching
m.post(matchedToSomeEdges(g1.getAllEdges()));
m.post(matchedToSomeEdges(g2.getAllEdges()));

Ask the synthesizer to create the solver... and search a solution
m.close();
DefaultGMSynthesizer synth();
GMSolution<Mod> sol = synth.solveMatching(m);

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example 1: Graph isomorphism

Declare 2 graph objects g1 and g2 and a matching m

bool[,] adj1 = ...
bool[,] adj2 = ...
SimpleGraph<Mod> g1(adj1);
SimpleGraph<Mod> g2(adj2);
Matching<Mod> m(g1,g2);

Post cardinality constraints on m bijective matching (1,1)

m.post(cardMatch(g1.getAllNodes(), 1, 1));
m.post(cardMatch(g2.getAllNodes(), 1, 1));

Post constraints to ensure edge matching
m.post(matchedToSomeEdges(g1.getAllEdges()));
m.post(matchedToSomeEdges(g2.getAllEdges()));

Ask the synthesizer to create the solver... and search a solution
m.close();
DefaultGMSynthesizer synth();
GMSolution<Mod> sol = synth.solveMatching(m);

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example 2: Induced Subgraph Isomorphism

Declare 2 graph objects g1 and g2 and a matching m

bool[,] adj1 = ...
bool[,] adj2 = ...
SimpleGraph<Mod> g1(adj1);
SimpleGraph<Mod> g2(adj2);
Matching<Mod> m(g1,g2);

Post cardinality constraints on m injective matching (1,0..1)

m.post(cardMatch(g1.getAllNodes(), 1, 1));
m.post(cardMatch(g2.getAllNodes(), 0, 1));

Post constraints to ensure edges of G1 to be matched
m.post(matchedToSomeEdges(g1.getAllEdges()));

Ask the synthesizer to create the solver... and search a solution
m.close();
DefaultGMSynthesizer synth();
GMSolution<Mod> sol = synth.solveMatching(m);

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Example 3: Largest Common Induced Subgraph

Declare 2 graph objects g1 and g2 and a matching m

bool[,] adj1 = ...
bool[,] adj2 = ...
SimpleGraph<Mod> g1(adj1);
SimpleGraph<Mod> g2(adj2);
Matching<Mod> m(g1,g2);

Post cardinality constraints on m (0..1,0..1)

m.post(cardMatch(g1.getAllNodes(), 0, 1));
m.post(cardMatch(g2.getAllNodes(), 0, 1));

Post a soft constraint to maximize the nb of matched vertices
m.softpost(minMatch(g1.getAllNodes(), 1), 1)

Post constraints to ensure edge matching
m.post(matchedToAllEdges(g1.getAllEdges()));
m.post(matchedToAllEdges(g2.getAllEdges()));

Ask the synthesizer to create the solver... and search a solution
m.close(); DefaultGMSynthesizer synth();
GMSolution<Mod> sol = synth.solveMatching(m);

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Synthesizing a solver for graph matching problems (1/3)

Warning: Ongoing research with a very first prototype
 many improvements are still to be done !

Canonical form of modeling constraints

Aggregate all modeling constraints of a same type

Cardinality (MinMatch, MaxMatch, CardMatch, ...)
Edge matching (MatchedToSomeEdges, MatchedToAllEdges,
...)
Label matching (MatchAllNodeLabels, MatchAllEdgeLabels, ...)

 Derive characteristics from the canonical model

Choose a search approach

CP if no soft constraints and MaxCard ≤ 1 for all nodes of a
graph
CBLS otherwise

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Synthesizing a solver for graph matching problems (2/3)

Creation of low level variables
Associate a variable with every vertex of both graphs

Domains are defined wrt cardinality constraints

MinMatch MaxMatch Type Domain
1 1 int N
0 1 int N ∪ {⊥}

Otherwise set 2N

Ensure symmetry (Xu matched to v ⇒ Xv matched to u):

CP Channeling constraints
CBLS invariants

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Synthesizing a solver for graph matching problems (3/3)

Post the canonical constraints

CP (hard constraints only)

Cardinality constraints
 Partly handled by variable domains
 Global allDiff for injective and bijective matchings
Edge constraints binary constraints
Label constraints on nodes variable domains
Label constraints on edges binary constraints

CBLS (hard and soft constraints)

Cardinality neighborhood if hard; invariants if soft
Edge invariants
Node labels neighborhood if hard; invariants if soft
Edge labels invariants

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

(Preliminary) Experimental Results (1/2)

SI Subgraph Isomorphism

SI+ Subgraph Isomorphism + additional distance constraint

#N Synthesizer/CP vf2 [Cordella et al. 99]
5% 10% 20% 33% 50% 5% 10% 20% 33% 50%

100 0.8 0.5 0.7 0.1 0.2 0.0 0.0 0.0 2.0 0.0
500 19.3 4.7 10.5 15.8 30.7 0.1 0.1 246.7 192.3 –

1000 30.6 595.8 119.0 152.3 – 86.7 – – – –

100 0.3 0.1 0.1 0.1 0.2
500 3.0 4.4 9.5 16.9 28.9

1000 16.1 47.8 82.5 148.0 –

Vf2 better for small instances

Synthesizer outperforms vf2 for larger instances

Additional constraint improves the search process

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

(Preliminary) Experimental Results (1/2)

SI Subgraph Isomorphism
SI+ Subgraph Isomorphism + additional distance constraint

#N Synthesizer/CP vf2 [Cordella et al. 99]
5% 10% 20% 33% 50% 5% 10% 20% 33% 50%

100 0.8 0.5 0.7 0.1 0.2 0.0 0.0 0.0 2.0 0.0
500 19.3 4.7 10.5 15.8 30.7 0.1 0.1 246.7 192.3 –

1000 30.6 595.8 119.0 152.3 – 86.7 – – – –
100 0.3 0.1 0.1 0.1 0.2
500 3.0 4.4 9.5 16.9 28.9

1000 16.1 47.8 82.5 148.0 –

Vf2 better for small instances

Synthesizer outperforms vf2 for larger instances

Additional constraint improves the search process

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

(Preliminary) Experimental Results (2/2)

Maximum common subgraph CBLS

#nodes time iterations edges%
25 8.5 2.5 7768.1 2301.3 48.3 1.1
50 33.9 10.7 8023.8 2543.3 40.2 0.5

100 141.5 46.4 8398.4 2755.0 34.5 0.2

First results to assess feasibility

Complete approaches cannot handle these instances

We haven’t (yet) compared these results with other approaches

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Further works on modeling for graph matching

Improve the analysis of the matching characteristics
 identify sub-problems that are “easy” to solve

Integrate dedicated filtering algorithms CP

Iterative partitionning for graph isomorphism (Nauty)
Iterative labeling for subgraph iso. (Zampelli et al 2009)

Integrate reactive search and other meta-heuristics for CBLS
 Parameter tuning... !

Combine CP and CBLS

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Graph similarity measures

H. Bunke and X. Jiang: Graph matching and similarity, chapitre de
“Intelligent systems and interfaces”, Kluwer, 2000

R. Ambauen, S. Fishe, and H. Bunke : Graph edit distance with node
splitting and merging and its application to diatom identification,
Workshop on Graph-based representation in PR, LNCS 2726:95-106,
Springer, 2003

P.-A. Champin and C. Solnon : Measuring the similarity of labeled
graphs, Int. Conf. on Case-Based Reasoning, LNCS 2689:80-95,
Springer, 2003

M. Boeres, C. Ribeiro, and I. Bloch : A randomized heuristic for scene
recognition by graph matching, Workshop on Experimental Algorithms,
100-113, 2004

S. Sorlin, C. Solnon, and J.-M. Jolion : A Generic Graph Distance
Measure Based on Multivalent Matchings, chapitre de “Applied Graph
Theory in Pattern Recog.”, Vol 52:151-182, Springer, 2007

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

(Sub)graph isomorphism

B. D. McKay : Practical Graph Isomorphism, Congressus Numerantium,
30:45-87, 1981

S. Sorlin and C. Solnon: A parametric filtering algorithm for the graph
isomorphism problem, Constraints 13(4):518-537, 2008

L.P. Cordella, P. Foggia, C. Sansone, and M. Vento : An Improved
Algorithm for Matching Large Graphs, in GbR, pages 149-159, 2001

L. Larrosa et G. Valiente : Constraint satisfaction algorithms for graph
pattern matching, Math Structures in Computer Science 12(4):403-422,
2002

S. Zampelli, Y. Deville, C. Solnon: Solving subgraph isomorphism
problems with constraint programming, Constraints (to appear)

G. Damiand, C. de la Higuera, J.C. Janodet, E. Samuel, and C. Solnon:
A Polynomial Algorithm for Submap Isomorphism : Application to
searching patterns in images, in GbR, LNCS 5534, pp102-112,
Springer, 2009

Introduction Filtering algorithms Polynomial algorithm Heuristic algorithms Constraint-based matching Ref

Heuristic algorithms and Constraint-based graph matching

M. Boeres, C. Ribeiro and I. Bloch: A randomized heuristic for
scene recognition by graph matching, Workshop on
Experimental Algorithms, 100-113, 2004

P.A. Champin and C. Solnon: Measuring the similarity of labeled
graphs, ICCBR, LNAI 2689:80-95, 2003

S. Sorlin and C. Solnon: Reactive Tabu Search for Measuring
Graph Similarity, GbR, LNCS 3434:172-182, 2005

O. Sammoud, C. Solnon and K. Ghédira : Ant Algorithm for the
Graph Matching Problem, EvoCOP, LNCS 3448:213-223, 2005

V. le Clément, Y. Deville, and C. Solnon: Constraint-based Graph
Matching, CP, LNCS 5732: 274:288, 2009

	Introduction
	

	Filtering algorithms
	

	Polynomial algorithm
	

	Heuristic algorithms
	

	Constraint-based matching
	

	Ref

