Advances in Spectral Modeling of Musical Sound

Sylvain Marchand

LaBRI – CNRS, Université Bordeaux 1

◆□ > ◆□ > ◆ 三 > ◆ 三 → ○ < ⊙ < ⊙

transformation of perceptive parameters

Ioudness

• pitch

- timbre
- time scale
- space location

for each sound entity of the musical mix...

3

ヘロト 人間 とくほとくほとう

transformation of perceptive parameters

- Ioudness
- pitch
- timbre
- time scale
- space location

for each sound entity of the musical mix...

3

・ロン ・ 四 と ・ 回 と ・ 回 と

transformation of perceptive parameters

- Ioudness
- pitch
- timbre
- time scale
- space location

for each sound entity of the musical mix...

3

・ロン ・ 四 と ・ 回 と ・ 回 と

transformation of perceptive parameters

- Ioudness
- pitch
- timbre
- time scale
- space location

for each sound entity of the musical mix...

.....

transformation of perceptive parameters

- Ioudness
- pitch
- timbre
- time scale
- space location

for each sound entity of the musical mix...

э

transformation of perceptive parameters

- Ioudness
- pitch
- timbre
- time scale
- space location

for each sound entity of the musical mix...

< ∃ >

(word "pizzerias" with English pronunciation – from Evan Smith's Ph.D.)

[McAulay & Quatieri (IEEE Trans. ASSP 1986)] [Serra & Smith (Computer Music Journal 1990)]

The audio signal *s* is given by:

$$s(t) = \sum_{p=1}^{P} a_p(t) \cos(\phi_p(t))$$
 with $\frac{d\phi_p}{dt}(t) = \omega_p(t)$

where *P* is the number of **partials**.

The functions a_p , ω_p , and ϕ_p are the instantaneous amplitude, frequency, and phase of the p^{th} partial, respectively.

Trajectories of the Partials

Frequencies and amplitudes, as functions of time, of the partials of an alto saxophone sound (\approx 1.5 second)

Non-Stationary Case

For one partial (P = 1), for one frame (centered on time t = 0):

$$\boldsymbol{s}(t) = \exp\left(\underbrace{(\lambda_0 + \mu_0 t)}_{\lambda(t) = \log(\boldsymbol{a}(t))} + j\underbrace{\left(\phi_0 + \omega_0 t + \frac{\psi_0}{2}t^2\right)}_{\phi(t)}\right)$$

 \rightarrow one step further in the Taylor expansion of the (log-)amplitude and phase parameters. . .

• amplitude

$$exp(\lambda_0) = a_0$$

 • amplitude modulation
 μ_0

 • phase
 ϕ_0

 • frequency
 ω_0

 • frequency modulation
 ψ_0

 • $\phi_0 = \frac{1}{\sqrt{25}}$

• ML: Mathieu Lagrange, MR: Matthias Robine

Peak Extraction (Short-Term Analysis)

・ロット (雪) (日) (日)

Short-Time Fourier Transform (STFT)

$$S_{w}(t,\omega) = \int_{-\infty}^{+\infty} s(\tau)w(\tau-t) \exp\left(-j\omega(\tau-t)\right) d\tau$$

using local maximum m of short-term magnitude spectrum

Analysis Window w (e.g. Hann window)

w with finite time support (for the STFT to be computable) and band-limited in frequency (peak \leftrightarrow partial bijection)

$$S_{w}(0,\omega) = \underbrace{a_{0}e^{j\phi_{0}}}_{s_{0}} \cdot \Gamma_{w}(\omega_{0}-\omega,\mu_{0},\psi_{0}) \quad \text{where}$$
$$\Gamma_{w}(\omega,\mu_{0},\psi_{0}) = \int_{-\infty}^{+\infty} w(t) \exp\left(\mu_{0}t + j\left(\omega t + \frac{\psi_{0}}{2}t^{2}\right)\right) dt$$

- S_w is measured
- a_0 and ϕ_0 are to be estimated
- Γ_{w} is a complex function of ω , μ , and ψ

Analysis Methods (STFT-Based)

- difference method (phase vocoder)
- trigonometric estimators
 - arcsin
 - arccos
 - arctan
- quadratic interpolation generalized
- spectral reassignment generalized
- derivative algorithm generalized

[Marchand (2000)]

- [Lagrange, Marchand & Rault (2005)]
- [Betser, Collen, Richard & David (2006)]
 - [Smith & Serra (1987)]
 - [Abe & Smith (2005)]
 - [Auger & Flandrin (1995)]
 - [Röbel (2002), Hainsworth (2003)]
- [Desainte-Catherine & Marchand (2000)]
 - [Marchand & Depalle (2008)]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

→ all these methods, except one (quadratic interpolation), are **equivalent** regarding the estimation of the **frequency** [Marchand & Lagrange (2006, 2007)]

Analysis Methods (STFT-Based)

- difference method (phase vocoder)
- trigonometric estimators
 - arcsin
 - arccos
 - arctan
- quadratic interpolation generalized
- spectral reassignment generalized
- derivative algorithm generalized

[Marchand (2000)]

[Lagrange, Marchand & Rault (2005)]

[Betser, Collen, Richard & David (2006)]

[Smith & Serra (1987)]

[Abe & Smith (2005)]

[Auger & Flandrin (1995)]

[Röbel (2002), Hainsworth (2003)]

[Desainte-Catherine & Marchand (2000)]

[Marchand & Depalle (2008)]

→ all these methods, except one (quadratic interpolation), are **equivalent** regarding the estimation of the **frequency** [Marchand & Lagrange (2006, 2007)]

uses the derivatives of the signal (the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = \left(\mu_0 + \boldsymbol{j}(\omega_0 + \psi_0 t)\right) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

 $\hat{\mu}_{\mathsf{0}}$ is given by the real part, $\hat{\psi}_{\mathsf{0}}$ with the second derivative

and finally
$$\hat{a}_0 = \left| \frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right|$$
 and $\hat{\phi}_0 = \angle \left(\frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right)$
practical issue: get the derivative *s'* from the signal *s*
[Marchand & Depalle (2008)]

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = \left(\mu_0 + \boldsymbol{j}(\omega_0 + \psi_0 t)\right) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

 $\hat{\mu}_0$ is given by the real part, $\hat{\psi}_0$ with the second derivative

and finally
$$\hat{a}_0 = \left| \frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right|$$
 and $\hat{\phi}_0 = \angle \left(\frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right)$
practical issue: get the derivative *s'* from the signal *s*
[Marchand & Depalle (2008)]

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = \left(\mu_0 + j(\omega_0 + \psi_0 t)\right) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

 $\hat{\mu}_{0}$ is given by the real part, $\hat{\psi}_{0}$ with the second derivative

and finally
$$\hat{a}_0 = \left| \frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right|$$
 and $\hat{\phi}_0 = \angle \left(\frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right)$
practical issue: get the derivative *s'* from the signal *s*
[Marchand & Depalle (2008)]

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = \left(\mu_0 + \boldsymbol{j}(\omega_0 + \psi_0 t)\right) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

 $\hat{\mu}_{0}$ is given by the real part, $\hat{\psi}_{0}$ with the second derivative

and finally
$$\hat{a}_0 = \left| \frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right|$$
 and $\hat{\phi}_0 = \angle \left(\frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right)$
practical issue: get the derivative *s'* from the signal *s*

[Marchand & Depalle (2008)]

uses the derivatives of the signal

(the derivative of an exponential is an exponential...)

$$\boldsymbol{s}'(t) = \left(\mu_0 + \boldsymbol{j}(\omega_0 + \psi_0 t)\right) \cdot \boldsymbol{s}(t)$$

 $j\psi_0 t$ is an odd function \implies its spectrum is real...

$$\hat{\omega}_0 = \Im\left(\frac{S'_w}{S_w}(\omega_m)\right)$$

 $\hat{\mu}_{0}$ is given by the real part, $\hat{\psi}_{0}$ with the second derivative

and finally
$$\hat{a}_0 = \left| \frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right|$$
 and $\hat{\phi}_0 = \angle \left(\frac{S_w(\hat{\omega}_0)}{\Gamma_w(0, \hat{\mu}_0, \hat{\psi}_0)} \right)$
practical issue: get the derivative *s'* from the signal *s*
[Marchand & Depalle (2008)]

イロト 不得 トイヨト イヨト 三日

comparison to the Cramér-Rao lower Bound (CRB) (the best performance achievable by an unbiased estimator, in presence of Gaussian white noise of given SNR)

(estimation of the amplitude in the non-stationary case)

э

Partial Tracking (Long-Term Analysis)

connecting the spectral peaks from frame to frame

General Principles

- birth / death concept, zombie state
- scheduling (lowest frequency first, highest amplitude first)
- extrapolation (constant, linear, linear prediction)
- connection probability (nearest frequency, freq. content)

The parameters of the partials are predictable...

c(*k*) coefficients found using the Burg method [Lagrange, Marchand & Rault (2004, 2007)]

16/35

< 🗗 >

Application to Sound Restoration

original sound

with a 650-ms gap...

- level-0 (temporal) linear prediction [Kauppinen et al. (2001)]
- level-1 linear prediction [Lagrange, Marchand & Rault (2005)]

Application to Sound Restoration

original sound

with a 650-ms gap...

- level-0 (temporal) linear prediction [Kauppinen et al. (2001)]
- level-1 linear prediction [Lagrange, Marchand & Rault (2005)]

High-Frequency Content Control

The parameters of the partials are band-limited to 20Hz...

High-Frequency Content Control

The parameters of the partials are band-limited to 20Hz...

High-Frequency Content Control

The parameters of the partials are band-limited to 20Hz...

Application to Note Onset Detection

< 17 →

æ

high-frequency content \rightarrow enhanced onset/offset detection

19/35

э

Piecewise-Polynomial Parameter Models

analysis frame k analysis frame k + 1 phase model $\phi[n] = \sum_{d=0}^{D} c_{d} n^{d}$ N samplessynthesis frame

D + 1 constraints at the frame boundaries (here D = 5):

 $\begin{cases} \phi[0] = \phi_k \\ \phi'[0] = \underline{\omega}_k \\ \phi''[0] = \underline{\psi}_k \end{cases} \text{ and } \begin{cases} \phi[N] = \phi_{k+1} + 2\pi M \\ \phi'[N] = \underline{\omega}_{k+1} \\ \phi''[N] = \underline{\psi}_{k+1} \end{cases}$ $\implies M = e \left[\frac{1}{2\pi} \left((\phi_k - \phi_{k+1}) + (\underline{\omega}_k + \underline{\omega}_{k+1}) \frac{N}{2} + (\underline{\psi}_k - \underline{\psi}_{k+1}) \frac{N^2}{40} \right) \right]$ [Girin, Marchand, di Martino, Röbel & Peeters (2003)]
Piecewise-Polynomial Parameter Models

analysis frame k analysis frame k + 1 phase model $\phi[n] = \sum_{d=0}^{D} c_d n^d$ N samplessynthesis frame

D + 1 constraints at the frame boundaries (here D = 5):

 $\begin{cases} \phi[0] = \phi_k \\ \phi'[0] = \underline{\omega}_k \\ \phi''[0] = \underline{\psi}_k \end{cases} \text{ and } \begin{cases} \phi[N] = \phi_{k+1} + 2\pi M \\ \phi'[N] = \underline{\omega}_{k+1} \\ \phi''[N] = \underline{\psi}_{k+1} \end{cases}$ $\implies M = e \left[\frac{1}{2\pi} \left((\phi_k - \phi_{k+1}) + (\underline{\omega}_k + \underline{\omega}_{k+1}) \frac{N}{2} + (\underline{\psi}_k - \underline{\psi}_{k+1}) \frac{N^2}{40} \right) \right]$ [Girin, Marchand, di Martino, Röbel & Peeters (2003)]

Piecewise-Polynomial Parameter Models

analysis frame k analysis frame k + 1 phase model $\phi[n] = \sum_{d=0}^{D} c_d n^d$ N samples synthesis frame

Reconstruction SNRs (synthetic examples)

model order D:	1	3	5
constant	∞	∞	∞
linear	47.19	∞	∞
vibrato only	18.93	88.84	∞
vibrato+tremolo	19.20	88.34	116.93

Piecewise-Polynomial Parameter Models

analysis frame k analysis frame k + 1 phase model $\phi[n] = \sum_{d=0}^{D} c_d n^d$ N samples synthesis frame

Reconstruction SNRs (natural samples)

model order D:	1	3	5
singing voice	20.14	20.39	20.42
bass	8.71	9.56	9.76
cello	16.35	16.92	17.02
violin	17.68	17.91	17.94

Software Oscillators

- constant amplitude and frequency (order-1 phase)
- recursive formulation of each partial signal

Piecewise-Polynomial Signal Model (PASS)

get the (global) signal without computing any partial signal...

- the partial signals are described by polynomials of degree D
- the sum of polynomials of degree D is a polynomial of degree D
- evaluate this unique polynomial generator of low degree (D = 2)
- update frequently the polynomial coefficients of each partial...
 - at optimal update times (each quarter cycle)
 - using a specific data structure (optimized heap)

Performance (Speed)

- DR complexity:
 - independent of the mean frequency \bar{f}
 - proportional to the sampling frequency F_s
- PASS complexity:
 - proportional to the mean frequency \bar{f}
 - roughly independent of the sampling frequency F_s

Р	Ŧ (Hz)	F _s (Hz)	DR (s)	PASS (s)
2500	200	44100	3.9	2.0
2500	300	44100	3.9	3.0
2500	400	44100	3.9	4.0
(computation times for 10 seconds of sound)				
Р	₹ (Hz)	F _s (Hz)	DR (s)	PASS (s)
4000	300	22050	3.2	6.6
4000	300	44100	6.3	6.6
4000	300	96000	13.7	6.6

- amplitude threshold
- frequency masking (mask M)
- using a specific data structure (skip-list)

ж

A

- amplitude threshold
- frequency masking (mask M)
- using a specific data structure (skip-list)

ж

A

- amplitude threshold
- frequency masking (mask M)
- using a specific data structure (skip-list)

- amplitude threshold
- frequency masking (mask M)
- using a specific data structure (skip-list)

(2)

- amplitude threshold
- frequency masking (mask M)
- using a specific data structure (skip-list)

Hierarchic Modeling

ML: Mathieu Lagrange, MR: Matthias Robine

Martin Raspaud

polynomials+sinusoids as model parameters $\mathcal{P}(t) = \Pi(t) + \sum_{p=1}^{P} a_p(t) \sin(\phi_p(t))$ [Raspaud, Marchand & Girin (2005)]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hierarchic Modeling

• ML: Mathieu Lagrange, MR: Matthias Robine

Martin Raspaud

polynomials+sinusoids as model parameters $\mathcal{P}(t) = \Pi(t) + \sum_{p=1}^{P} a_p(t) \sin(\phi_p(t))$ [Raspaud, Marchand & Girin (2005)]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Hierarchic Sinusoidal Modeling

Stochastic Modeling

• ML: Mathieu Lagrange, MR: Matthias Robine

• Martin Raspaud

• Guillaume Meurisse

Stochastic Modeling

• ML: Mathieu Lagrange, MR: Matthias Robine

- Martin Raspaud
- Guillaume Meurisse

Towards an Unified Sinusoids+Noise Model

• distribution of the magnitude *M* in time (and frequency)

- sinusoid of amplitude A: constancy (Gaussian distribution)
- noise of deviation σ : variability
- sinusoid+noise:

(Rayleigh distribution) \rightarrow Rice distribution

$$p_{A,\sigma}(M) = \frac{M}{\sigma^2} \exp\left(\frac{-\left(M^2 + A^2\right)}{2\sigma^2}\right) I_0\left(\frac{AM}{\sigma^2}\right)$$

28/35

Analysis Method and Resynthesis Results

analysis (moments method): from the measured normalized mean μ' , estimate the SNR $\gamma = \frac{A^2}{2\sigma^2}$ (then σ) by solving

$$\mu'(\gamma) = \frac{\sqrt{\pi}}{2\sqrt{1+\gamma}} \left[(1+\gamma)I_{e_0}\left(\frac{\gamma}{2}\right) + \gamma I_{e_1}\left(\frac{\gamma}{2}\right) \right]$$

[Meurisse, Hanna & Marchand (2006)]

Spatial Modeling

• ML: Mathieu Lagrange, MR: Matthias Robine

▲□▶▲□▶▲□▶▲□▶ □ のQ@

30/35

- Martin Raspaud
- Guillaume Meurisse
- Joan Mouba

Spatial Modeling

• ML: Mathieu Lagrange, MR: Matthias Robine

- Martin Raspaud
- Guillaume Meurisse
- Joan Mouba

Sound Propagation and Head Model

r: head radius, c: sound celerity

Sound Propagation and Head Model

r: head radius, c: sound celerity

Duplex Theory [Lord Rayleigh (1907)]:

- ITD prominent at low frequencies (less absorbed),
- ILD crucial for high frequencies (phase ambiguity).

Spatialization Algorithm

binaural spatialization

 $S_L(f) = H_L(f) \cdot S(f) \text{ where } H_L(f) = 10^{+\text{ILD}(\theta, f)/2} e^{+jf\text{ITD}(\theta, f)/2}$ $S_R(f) = H_R(f) \cdot S(f) \text{ where } H_R(f) = 10^{-\text{ILD}(\theta, f)/2} e^{-jf\text{ITD}(\theta, f)/2}$

• transaural multi-diffusion

$$\begin{split} S_1 &= -S \cdot (H_R \cdot H_{R1} - H_L \cdot H_{R2}) / \Delta \\ S_2 &= -S \cdot (H_L \cdot H_{L2} - H_R \cdot H_{L1}) / \Delta \\ \text{where } \Delta &= H_{L1} \cdot H_{R2} - H_{L2} \cdot H_{R1} \end{split}$$

[Mouba & Marchand (2008)]

Spatialization Algorithm

binaural spatialization

 $S_L(f) = H_L(f) \cdot S(f) \text{ where } H_L(f) = 10^{+\text{ILD}(\theta, f)/2} e^{+jf\text{ITD}(\theta, f)/2}$ $S_R(f) = H_R(f) \cdot S(f) \text{ where } H_R(f) = 10^{-\text{ILD}(\theta, f)/2} e^{-jf\text{ITD}(\theta, f)/2}$

transaural multi-diffusion

$$\begin{split} S_1 &= -S \cdot (H_R \cdot H_{R1} - H_L \cdot H_{R2}) / \Delta \\ S_2 &= -S \cdot (H_L \cdot H_{L2} - H_R \cdot H_{L1}) / \Delta \\ \text{where } \Delta &= H_{L1} \cdot H_{R2} - H_{L2} \cdot H_{R1} \end{split}$$

[Mouba & Marchand (2008)]

33/35

Conclusions and Perspectives

 modeling sinusoidal hierarchic 	
stochasticspatial	
 analysis short-term 	
derivative algorithmequivalence of phase-based methods	
 long-term using linear prediction frequency content control 	
• synthesis	
 polynomial approach software oscillators taking advantage of psychoacoustics 	

Conclusions and Perspectives

modeling sinusoidal	\rightarrow transients
hierarchic	
 stochastic 	
 spatial 	\rightarrow elevation angle
 analysis 	
 short-term 	
 derivative algorithm 	\rightarrow optimization
 equivalence of phase-based methods 	
 long-term 	\rightarrow evaluation
 using linear prediction 	
 frequency content control 	
 synthesis 	\rightarrow hybrid method
 polynomial approach 	
 software oscillators 	
 taking advantage of psychoacoustics 	

(日)

• separation of sound entities (structuring)

- semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
- informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

35/35

・ロット (雪) (日) (日)

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- o pitch
- timbre
- time scale
- spatial location

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

Ioudness

- pitch
- timbre
- time scale
- spatial location

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

▲□▶▲□▶▲□▶▲□▶ □ のQで

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

35/35

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- separation of sound entities (structuring)
 - semi-blind (using perceptive cues)
 - common onset
 - correlated evolutions
 - spectral structure (harmonic sources)
 - spatial location
 - informed
 - using side information
 - using watermarking

active listening

- Ioudness
- pitch
- timbre
- time scale
- spatial location

35/35

・ロット (雪) (日) (日)