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Active Listening
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transformation of perceptive parameters
@ loudness
@ pitch
@ timbre
@ time scale
@ space location
for each sound entity of the musical mix. ..
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(word “pizzerias” with English pronunciation — from Evan Smith’s Ph.D.)
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Sinusoidal Modeling — the original sin(). ..

[McAulay & Quatieri (IEEE Trans. ASSP 1986)]
[Serra & Smith (Computer Music Journal 1990)]

The audio signal s is given by:

Z L ddp
s(t) =) ap(t) cos(p(t) with 0 =wp(0
p=1

where P is the number of partials.

The functions ap, wp, and ¢ are the instantaneous
amplitude, frequency, and phase of the p" partial, respectively.
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Trajectories of the Partials

frequency
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Frequencies and amplitudes, as functions of time,
of the partials of an alto saxophone sound (=~ 1.5 second)
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Non-Stationary Case

For one partial (P = 1), for one frame (centered on time t = 0):

s(t) = exp| (Ao + pot) +j (qbo + wot + @tz)
N—— 2
A(t)=log(a(t))

o(t)

— one step further in the Taylor expansion
of the (log-)amplitude and phase parameters. ..

@ amplitude exp(Ag) = ap
@ amplitude modulation to
@ phase ®o
@ frequency wo

@ frequency modulation Yo

7/35



chitecture

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSIS SYNTHESIS

SM+ML ML+SM <1 _ SM+ML+MR
z T
c
) peak partial a z deterministic
input e = > & ) »output
extractor tracker ) 8 synthesizer
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deterministic o §
analyzer °
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Peak EXtraction ANALYSIS
(Short-Term Analysis)

Short-Time Fourier Transform (STFT)

Sw(t, w) = f+m s(t)w(t — t)exp (—jw(t — 1)) dt

(o]

s(t) = ape/®0 exp (yot +j(wot + %012))

amplitude
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using local maximum m of short-term magnitude spectrum
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AnaIySiS Window w ANALYSIS

(e.g. Hann window)

w with finite time support (for the STFT to be computable)
and band-limited in frequency (peak < partial bijection)

Sw(0,w) = e/ - Ty (wo — w, o, Vo) Where
So

+00

w(t) exp (yot + j(wt + @tz)) dt

FW(a)I Ho, lPO) = f >

—00

@ S, is measured
@ 4y and ¢ are to be estimated
@ I'y is a complex function of w, u, and ¢
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Analysis Methods

(STFT-Based)

ANALYSIS

peak
extractor

@ difference method (phase vocoder)

@ trigonometric estimators
@ arcsin
@ arccos
@ arctan
@ quadratic interpolation
generalized
@ spectral reassignment
generalized
@ derivative algorithm
generalized

[Marchand (2000)]

[Lagrange, Marchand & Rault (2005)]
[Betser, Collen, Richard & David (2006)]
[Smith & Serra (1987)]

[Abe & Smith (2005)]

[Auger & Flandrin (1995)]

[Rébel (2002), Hainsworth (2003)]
[Desainte-Catherine & Marchand (2000)]
[Marchand & Depalle (2008)]
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AnaIySiS Methods ANALYSIS

(STFT-Based)

@ difference method (phase vocoder)
@ trigonometric estimators

@ arcsin [Marchand (2000)]

@ arccos [Lagrange, Marchand & Rault (2005)]

@ arctan [Betser, Collen, Richard & David (2006)]

@ quadratic interpolation [Smith & Serra (1987)]
generalized [Abe & Smith (2005)]

@ spectral reassignment [Auger & Flandrin (1995)]
generalized [Rébel (2002), Hainsworth (2003)]

@ derivative algorithm [Desainte-Catherine & Marchand (2000)]
generalized [Marchand & Depalle (2008)]

— all these methods, except one (quadratic interpolation),
are equivalent regarding the estimation of the frequency
[Marchand & Lagrange (2006, 2007)]
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Derivative Algorithm ANALYSIS

peak
extractor

uses the derivatives of the signal
(the derivative of an exponential is an exponential. . .)

s'(t) = (o + j(wo + Pot)) - s(t)
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peak
extractor

uses the derivatives of the signal
(the derivative of an exponential is an exponential. . .)

s'(t) = (o + j(wo + Pot)) - s(t)
Jwot is an odd function = its spectrum is real. ..
wo=3 (ﬁ(wm))
w

flo is given by the real part, 1,@0 with the second derivative

SW(C‘A)O)

and finally &g = |————
1_|W(0/ Ho, IPO)

SW(C‘A)O) )

and AO =/ (—,\
¢ 1_|W(O/ [AlO/ ¢0)
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Derivative Algorithm ANALYSIS

peak
extractor

uses the derivatives of the signal
(the derivative of an exponential is an exponential. . .)

s'(t) = (o + j(wo + Pot)) - s(t)
Jwot is an odd function = its spectrum is real. ..

o= (%(wm))

w

flo is given by the real part, 1,@0 with the second derivative

and finally &g =

SW(ACUO)A and QADO _ Z( SW(ACUO)A )
1_|W(0/ Ho, IPO) 1_|W(O/ Ho, ¢0)
practical issue: get the derivative s’ from the signal s
[Marchand & Depalle (2008)]
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Performance ANALYSIS

(Precision)

comparison to the Cramér-Rao lower Bound (CRB)
(the best performance achievable by an unbiased estimator,
in presence of Gaussian white noise of given SNR)

estimation of the amplitude

variance of the error (log10 scale)

2k

-14
20 0 20 40 60 80 100

signal-to-noiseratio (dB)

(estimation of the amplitude in the non-stationary case)
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Partial TraCKing ANALYSIS

(Long-Term Analysis)

connecting the spectral peaks from frame to frame
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to form the trajectories of the partials
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General Principles

partial
tracker

frqu B ©
o O O

A 0

@ birth / death concept, zombie state

@ scheduling (lowest frequency first, highest amplitude first)
@ extrapolation (constant, linear, linear prediction)

@ connection probability (nearest frequency, freq. content)
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USing Linear Prediction ANALYSIS

partial
tracker

The parameters of the partials are predictable. ..

ooo0o0
oo o]
2 *
) o
200
Q
E oo

" time (fraﬁ”ne) ’
K
P(n) =) c(k)P(n - k)
k=1

c(k) coefficients found using the Burg method
[Lagrange, Marchand & Rault (2004, 2007)]
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Application to ANALYSIS

- artial
Sound Restoration
@ original sound with a 650-ms gap. ..
@ level-0 (temporal) linear prediction [Kauppinen et al. (2001)]
@ level-1 linear prediction [Lagrange, Marchand & Rault (2005)]
) .
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- artial

Sound Restoration
@ original sound with a 650-ms gap. ..
@ level-0 (temporal) linear prediction [Kauppinen et al. (2001)]
@ level-1 linear prediction [Lagrange, Marchand & Rault (2005)]
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High-Fl‘equency ANALYSIS

Content Control

The parameters of the partials are band-limited to 20Hz. ..

20 3 3 4 s o0 7o € % .0

16| B
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"
N & o ® ©
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" n n Ao
o 10 20 30 a0 50 60 70 80 920

sinusoid with local error (at frame 50)

high-frequency content found using filtering
[Lagrange, Marchand & Rault (2005, 2007)]
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High-Fl‘equency ANALYSIS

Content Control

The parameters of the partials are band-limited to 20Hz. ..

20 3 T 3 4 s o0 7o e % .0

is|
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o 10 20 30 40 50 60 70 80 920

saxophone with vibrato

high-frequency content found using filtering
[Lagrange, Marchand & Rault (2005, 2007)]
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High-FI‘equency ANALYSIS

Content Control

The parameters of the partials are band-limited to 20Hz. ..

20 3 3 4 s o0 7o € % o0

18 Jeos0
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Jo00
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o 10 20 30 40 50 60 70 80 920

noise (tracked by error)

high-frequency content found using filtering
[Lagrange, Marchand & Rault (2005, 2007)]

18/35



Application to ANALYSIS

Note Onset Detection

frequency (Hz)
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high-frequency content — enhanced onset/offset detection
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SYNTHESIS

Piecewise-Polynomial -

Parameter Models

analysis frame k analysis frame k + 1

phase model Ok, Wk, Yk k1, Wk+1, Pk
I ® I ® I
D
_ d «< >
oln] = dZ—:‘) Ca 1N N samples

synthesis frame

D + 1 constraints at the frame boundaries (here D = 5):

(P[O] = (Pk (P[N] = ¢k+1 +2nM
0] = @  and PIN] = @,
o'l = ¢ ¢"IN] =

—k+1

20/35



Piecewise-Polynomial

Parameter Models

analysis frame k analysis frame k + 1

phase model Ok, Wk, Yk k1, Wk+1, Pk
I ® I ® I
D
_ d «< >
oln] = dZ—:‘) Ca 1N N samples

synthesis frame

D + 1 constraints at the frame boundaries (here D = 5):

$[0] Pk ¢IN]
¢'[0] W, and ¢’'[N]
¢"[0] ¢"[N]

¢k+1 +2nM

W41

k RS

N N2

[Girin, Marchand, di Martino, Rébel & Peeters (2003)]
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Piecewise-Polynomial -

Parameter Models

analysis frame k analysis frame k + 1

phase model Ok, Wk, Yk k1, Wk+1, Pk
I ® I ® I
«< >
N samples

synthesis frame

Reconstruction SNRs (synthetic examples)

| modelorderD: | 1 | 3 | 5 |
constant 00 ) 00
linear 47.19 00 )

vibrato only 18.93 | 88.84 00
vibrato+tremolo || 19.20 | 88.34 | 116.93
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Piecewise-Polynomial

Parameter Models

analysis frame k analysis frame k + 1

phase model Ok, Wk, Yk k1, Wk+1, Pk
I ® I ® I
«< >
N samples

synthesis frame

Reconstruction SNRs (nhatural samples)

| modelorderD: | 1 | 3 | 5 |
singing voice || 20.14 | 20.39 | 20.42
bass 8.71 | 9.56 | 9.76

cello 16.35 | 16.92 | 17.02

violin 17.68 | 17.91 | 17.94
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Software Oscillators

SYNTHESIS

@ constant amplitude and frequency (order-1 phase)
@ recursive formulation of each partial signal

amplitude

s[n] = ag cos(¢po + Nwy)

a Digital Resonator

tim: C = 2cos(wy)
s[0] = apcos(¢o)
s[1] = apCcos(¢o + w,)
sln+1] = C-s[n]—-s[n-1]

1/fo with @, = 27t /Fs
complexity: 1 x, 1 + (optimal...)
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Piecewise-Polynomial

Signal Model (PASS)

get the (global) signal without computing any partial signal. ..
@ the partial signals are described by polynomials of degree D
@ the sum of polynomials of degree D is a polynomial of degree D
@ evaluate this unique polynomial generator of low degree (D = 2)
@ update frequently the polynomial coefficients of each partial. ..

e at optimal update times (each quarter cycle)
@ using a specific data structure (optimized heap)

partial 1
5
partial 2 ,/> 5]
.
partial 3

o

\\j\j\\\jj\\j\j\j\\jr m
time A A P AP

[Robine, Strandh & Marchand (2006)]
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Performance

(Speed)

@ DR complexity:
e independent of the mean frequency f
@ proportional to the sampling frequency F;
@ PASS complexity:
e proportional to the mean frequency f
e roughly independent of the sampling frequency Fs

| P [ F(Hz) | F(Hz) [ DR(s) | PASS (5) |

2500 | 200 44100 3.9 2.0
2500 | 300 44100 3.9 3.0
2500 | 400 44100 3.9 4.0

(computation times for 10 seconds of sound)
| P | #(Hy | F(Hz) [ DR(s) | PASS (s) |
4000 300 22050 3.2 6.6

4000 | 300 44100 6.3 6.6
4000 | 300 96000 13.7 6.6
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Taking Advantage

of Psychoacoustics

120 [Lagrange & Marchand (2001)]
100
g 80 amplitude (dB)
é’ 60 P2t
s 4 | *Ps
b ®
* 2 o M
0 SR T R
o 5 10 15 20 25 1 1 1 1 1 >
frequency (Bark) frequency (Bark)
R ‘ amplitude sort Ll frequgncy ‘ R 5 P
partials ‘ threshold masking ‘ partials

@ amplitude threshold
@ frequency masking (mask M)
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amplitude (dB)

SYNTHESIS

120 [Lagrange & Marchand (2001)]
100
80 amplitude (dB)
60
40
pi e T
20 | |
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frequency (Bark) frequency (Bark)
P ‘ amplitude frequency ‘ R<P
partials ‘ threshold sort ™ masking ‘ partials

@ amplitude threshold

@ frequency masking (mask M)
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SYNTHESIS

120 [Lagrange & Marchand (2001)]
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g 80 amplitude (dB)
§ 60 P2
5 40 P4
pil *
SR bR M
0 ! Ps * *Ps
0 5 10 15 20 25 | : : >
frequency (Bark) frequency (Bark)
R amplitude sort Ll frequgncy R 5 P
partials ‘ threshold masking partials

@ amplitude threshold

@ frequency masking (mask M)
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Taking Advantage

of Psychoacoustics

120 [Lagrange & Marchand (2001)]
100
g 80 amplitude (dB)
éj 60 P2
5 40 P4
p
5 20 ' M
0 T R P3 I g Ps
0 5 10 15 20 2 S RSN
frequency (Bark) frequency (Bark)
R ‘ amplitude sort Ll frequgncy R 5 P
partials ‘ threshold masking partials

@ amplitude threshold
@ frequency masking (mask M)
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Taking Advantage

of Psychoacoustics

120 [Lagrange & Marchand (2001)]

100 ®
g ® : Orq1—- ®|N
é’ 60 _ Clnm I
2 4w — —
5 2l = E — L

0
1 H; 3 4 5 % 8

0 5 10 15 20 25
frequency (Bark)

P amplitude frequency ‘ R<P
. —> sort = . .
partials ‘ threshold masking ‘ partials

@ amplitude threshold
@ frequency masking (mask M)
@ using a specific data structure (skip-list)
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Hierarchic Modeling

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSIS SYNTHESIS

' i

i

i SM+ML ML+SM i 4 4 SM+ML+MR

' ' = -

' i =} >

i . .
. i peak partial ! Q = deterministic

= = ! H >

mp | extractor tracker i %‘ g synthesizer oupHt

: ' g

' i Z 2

i deterministic i @ §

i
i analyzer ! g
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Hierarchic Modeling

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSIS

higher level
modeling

SM+ML ML+SM

peak Lyl partial

input

extractor tracker

ONRINLONALS

deterministic
analyzer

NOILVINHO4SNVHL

SYNTHESIS

SM+ML+MR

deterministic

synthesizer

@ Martin Raspaud

polynomials+sinusoids as model parameters

P(t) = TI(t) + L. ap(t) sin(p(1))
[Raspaud, Marchand & Girin (2005)]

»output
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Hierarchic Sinusoidal Modeling

synthesis

partials of partials

synthesis

partials

signal

level 2

analysis

level 1

analysis

level 0

[Marchand and Raspaud (2004)]

sinusoidal
models

temporal
model
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Stochastic Modeling

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSIS . SYNTHESIS
higher level
modeling
SM+ML ML+SM 4 o SM+ML+MR
z E
c
) peak partial 3 z deterministic
input = = H & A »output
extractor tracker %‘ 8 synthesizer
Z ]
deterministic a ;
analyzer o
=z

@ Martin Raspaud
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Stochastic Modeling

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSIS . SYNTHESIS
higher level
modeling
SM+ML ML+SM 4 o SM+ML+MR
z E
c
) peak partial 3 z deterministic
input = = H & A »output
extractor tracker %‘ 8 synthesizer
Z ]
deterministic a ;
analyzer o
,,,,,,,,,,,,,,,,,,,,,,,,,, =z
stochastic | | stochastic
analyzer synthesizer

@ Martin Raspaud
@ Guillaume Meurisse

27/35



Towards an Unified Sinusoids+Noise Model

@ distribution of the magnitude M in time (and frequency)

6

0.7,

0.6

TREX
HLLE

P 0 2 4 6 B 10
10 20 30 40 50 60 M

@ sinusoid of amplitude A: constancy (Gaussian distribution)
@ noise of deviation ¢: variability (Rayleigh distribution)
@ sinusoid+noise: — Rice distribution
- (M2 + A2) AM

—— |b(57)

M
s (M) = =
Pac (M) = =3 exp 552
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Analysis Method and Resynthesis Results

analysis (moments method):
from the measured normalized mean p’,

estimate the SNR y = (then o) by solving

HO) = sz[“ oo (5) 47l ()

Frequency (kHz)
- N W kv

8
Time (s)

original (saxophone+wind)

8
Time (s)

resynthesis (o only)

[Meurisse, Hanna & Marchand (2006)]
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Spatial Modeling

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSIS . SYNTHESIS
higher level
modeling
T '
1 SM+ML ML+SM i 1 4 SM+ML+MR
: : = 3
i
=
) | peak partial | ! a z deterministic
input - : = > & h »output
| extractor tracker i %‘ 3 synthesizer
i
i ! Z 2
! deterministic i @ >
i
i analyzer : ]
,,,,,,,,,,,,,,,,,,,,,,,,,, ' =z
stochastic | stochastic
analyzer synthesizer

@ Martin Raspaud
@ Guillaume Meurisse
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Spatial Modeling

@ ML: Mathieu Lagrange, MR: Matthias Robine

ANALYSI
sis higher level

modeling

SM+ML ML+SM

peak Lyl partial

|-»
input localizer
1y extractor tracker

deterministic
analyzer

stochastic

ONRINLONALS

NOILVINHO4SNVHL

analyzer

SYNTHESIS
2]
SM+ML+MR \L
deterministic o
. spatializer
synthesizer

stochastic

synthesizer

@ Martin Raspaud
@ Guillaume Meurisse
@ Joan Mouba

output
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Sound Propagation and Head Model

ILD (Interaural Level Difference)

ILD(, f) = a(f)% sin(0)

Q [Viste & Evangelista (2003)]
.

ITD (Interaural Time Difference)

ITD(6, f) = 5(f)£ sin(0)
[Mouba & Marchand (2008)]

r: head radius, c: sound celerity
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Sound Propagation and Head Model

ILD (Interaural Level Difference)

ILD(6, f) = a(f)% sin(0)

level scaling factor o

[Viste & Evangelista (2003)]

ITD (Interaural Time Difference)

time scaling factor B

ITD(6, f) = 5(f)£ sin(0)

8 10 1‘2 1‘6 1‘6 1‘8 20
frequency (kHz)

[Mouba & Marchand (2008)]

r: head radius, c: sound celerity
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Localization Algorithm

Duplex Theory [Lord Rayleigh (1907)]:
@ |ITD prominent at low frequencies (less absorbed),
@ ILD crucial for high frequencies (phase ambiguity).

histogram obtained with a real source positioned at 6 = 30°

00000

00000000

ooooooo

oooooooo

uuuuuu

-100

-50 o 5‘0
azimuth (deg)
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Spatialization Algorithm

@ binaural spatialization

SL(f) = Hi(f) - S(f) where Hy (f) = 10*1-PO/2+MTDO.h/2
Sr(f) = Hr(f) - S(f) where Hg(f) = 107'-P(O.)/2iMTDO.N/2
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Spatialization Algorithm

@ binaural spatialization

SL(f) = HL(f) - S(f) where H(f) = 107!-P@N/2g+MTD(E,N/2
Sr(f) = Hr(f) - S(f) where Hg(f) = 107'-P@:N/2g=/TDON)/2

@ transaural multi-diffusion

St =-=S-(Hr-Hg1 — H. - Hr2)/A
S;=—-S-(HL-Hiz—Hgr-Hi1)/A
where A = HL1 . HHZ - HL2 . HH1

o Xo

[Mouba & Marchand (2008)]
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Conclusions

@ modeling
@ sinusoidal
@ hierarchic
@ stochastic
o spatial

@ analysis
@ short-term

@ derivative algorithm
@ equivalence of phase-based methods

e long-term
@ using linear prediction
@ frequency content control
@ synthesis
@ polynomial approach
o software oscillators
e taking advantage of psychoacoustics

24/35



Conclusions and Perspectives

@ modeling — transients
@ sinusoidal
@ hierarchic
o stochastic
o spatial — elevation angle
@ analysis
@ short-term

@ derivative algorithm — optimization
@ equivalence of phase-based methods

e long-term — evaluation
@ using linear prediction
@ frequency content control
@ synthesis — hybrid method
@ polynomial approach
e software oscillators
e taking advantage of psychoacoustics
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More (Mid-Term) Perspectives...

@ separation of sound entities (structuring)
@ semi-blind (using perceptive cues)

@ common onset

@ correlated evolutions

@ spectral structure (harmonic sources)
@ spatial location

e informed
@ using side information
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