
New Advances In MDE

Jordi Cabot
INRIA & École des Mines de Nantes,

Nantes, France

http://www.emn.fr/x-info/atlanmod/

AtlanMod is a joint INRIA – École de Mines de Nantes research team

Participates in several national and european projects
– OPEES, CESAR, GALAXY, IDM++,…

Strong links with industrial partners: Obeo, Mia-Software, BNP
Paribas, Prodevelop…

Permanents (4) + Non-permanents (8)
– Jordi Cabot (faculty)
– Frédéric Jouault (faculty)
– Massimo Tisi (faculty)
– Hugo Brunelière (research engineer)

The Team

We emphasize the use of models as key artifacts in all software
engineering activities. Because this more abstract view:
– Improves the productivity
– Reduces the number of defects
– Facilitates the reusability, evolution and maintenance
– Increases the decomposition and modularization
– …

This “new” paradigm is called MDE (model-driven engineering or
“model-driven everything”)

MDE goes beyond MDD (model-driven development) that mainly
focused on code-generation as the main activity

MDE involves MDD but also: MDReengineering, collaborative
development, system adaptation and evolution,…

The Focus of the Team: MDE

Technical Spaces

MDE Grammarware

MOF
(metametamodel)

UML
(metamodel)

ABank.uml

EBNF.g

Java.g

MyProgram.java

At the core: Model Transformations – ATL

ATL : ATLAS Transformation Language . ATLAS Transformation Language . ATL is a language and a
virtual machine dedicated to model to model transformations

• A model transformation is the automatic creation of target models
from source models.

• E.g., we can use ATL to transform analysis models to design models
(e.g. UML class diagrams -> relational models)

We can transform models: ATL

Everything is a model: ATL transformations are also models and
can be manipulated as such <-Same for all other proposals

The language is a declarative-imperative hybrid:
– Declarative part:

• Matched rules with automatic traceability support,
• Side-effect free navigation (and query) language: OCL 2.0

– Imperative part:
• Called rules,
• Action blocks.

Core principle: Read only source models – write only target models
Difference wrt Graph Transformations

ATL

Operational context of ATL

MOF

MMa MMb

Ma Mb
MMa2MMb.atl

ATL
MMa is the
source
metamodel

Ma is the source model Mb is the target model

MMB is the
target
metamodel

ATL

ATL Editor

• ATL Editor features:
Type completion
Left-side bindings completion
Basic code templates

ATL Editor

Better support for HOT (High-Order Transformations):
transformations that manipulate transformations

Bidirectionality (derive B->A if I define A->B)

Incrementality/synchronization (incrementally change the target
model after updates on the source model)

Transformations on infinite models (streaming, lazy evaluation):

Optimization (parallel execution)

Composition and transformation chains

…

Model transformations: Open Challenges

Relating Models – AMW and AML

Transformations (even if declaratively specified) are still a low-level
manipulation technique

We may be interested in expressing relationships between models
and model elements

Ex. to express that an element X is a refinement of an element Y
in a different model

Some of these relationships can be automatically derived (matching
elements in both models using heuristics)

We can reuse this relationships to generate transformations

Beyond Model transformations

Motivating example:

Enterprise 1 and 2 have been joined. Enterprise 1 has to
Migrate its RH database schema to the Enterprise 2’s.

Schema 1 Schema 2

Do we have a better migration strategy than simply writing an
ATL Transformation?

Concepts in mind

MMAV1

MAV1

MMAV2

MAV2

Weaving
model

Higher-order transformation

Cumulative
Matching

Adaptation
transformation

Weaving model

Solution to capture relationships between (meta)model elements

Relationships are represented by a weaving model
– The model elements in the weaving model represent the

relationships between the related elements
– As any kind of model, the weaving model can be saved, stored,

transformed, modified
– Different kinds of links

• Equality, concatenation, equivalence, etc.

Core weaving metamodel

Supports basic link management

How to link
model elements

External references

(one link has
N endpoints)

Core is extended with different kinds of relationships
– Comparison

(Equivalence, Addition, Delete)
– Traceability

(source generates target)

Weaving metamodel extensions

Core

Ext1 Ext2 ExtN
…

Ext11

AMW: Model Weaver

Adaptive
interface

Identification
mechanism

Plugged panels

Matching (Ontology, Schemas)

Identifies mappings, i.e., equivalence relations between two
elements, e.g., a and b, a in a model A, and b in a model B

A set of heuristics (i.e., a strategy) is needed to compare/align
models

Goal:
– improve heuristics for (different kinds of) models
– Minimize the effort of writing matching strategies

AML

The AtlanMod Matching Language (AML)

– A DSL for expressing strategies that match two models

– Captures and mechanizes a significant portion of matching code

– Aids to reason about matching strategy improvements

AML

• A matching strategy is a chain of matching model transformations
– Each matching transformation

– Instruments a heuristic
– Takes as input a set of models

– An equal model
– A set of additional models

– Yields an equal model

AML: Concepts (2/2)
• An equal model contains a set of mapping elements

– An equal element references to
• An element a (in a leftModel)
• An element b (in a rightModel)

– Has attached a similarity value
[0-1]

• We have implemented several matching heuristics from research
literature

Example: A strategy

KM3 – Creating your own domain specific
language

UML vs DSLs

DSLs are a very hot topic right now

DSLs allow designers to create modeling languages that
perfectly fit a given domain (e.g. smaller and with elements that
better map the domain semantics)

UML can be regarded as a collection of DSLs -> possible
evolution of the UML

UML or DSLs? My pragmatic approach -> Create a DSL only
when UML + simple profiles do not fit

Overview of KM3

KM3 is a metametamodel:
– That is similar to MOF (OMG) and Ecore (Eclipse EMF),
– That is simple (i.e. less concepts than Ecore or MOF 1.4),
– With a simple textual concrete syntax,
– With a precise definition based on first order logic.

Core concepts:
– Class used to type nodes of the model

• Supporting class inheritance,
• Owning references,

– Reference used to type edges of the model:
• Having an opposite reference

Example: a relational metamodel

Named

+name:String

Table Column

owner+

col+

*
{ordered}

keyOf+ 0..1 key+ *

Type* type+

package Relational {

abstract class Named {
attribute name : String;

}

class Table extends Named {
reference col[*] ordered container : Column oppositeOf owner;
reference key[*] : Column oppositeOf keyOf;

}

class Column extends Named {
reference owner : Table oppositeOf col;
reference keyOf[0-1] : Table oppositeOf key;
reference type : Type;

}

class Type extends Named {}
}

[…]

Example: relational metamodel in KM3Named

+ name: String

Table Column

owner+

col+

*
{ ordered }

keyOf+ 0..1 key+ *

Type* type+

KM3 in Use

KM3 used as a pivot metamodel

KM3 can be used to represent various metamodels:
– There is a library with already 234 metamodels in various domains

(e.g., BibTeX, COBOL, DTD, HTML, Java)

KM3 metamodels can be created from and translated to other
MDE variants:
– MOF 1.4, Ecore, MetaGME, Microsoft DSL Tools, etc.

TCS - Textual Syntax Specification

Textual Concrete Syntaxes

EMF provides abstract syntax for models.

Two main ways of displaying and editing models:
– Graphical notations -> GMF used to develop editors for graphical

notations
– Textual notations -> TMF Project (TCS) to create editors for custom

textual notations.

Graphical notations are often useful to describe structural
concepts (e.g. class diagrams)

Textual notations are
– Better fit for describing behavior or algorithms (e.g. expressions)
– Gaster and easier to modify,
– Rich set of existing tooling for dealing with text files (diff, merge,

copy & paste, search & replace ...).

Intra-technology transformation:

MDE Grammarware

MOF

Metamodel

Model

EBNF.g

Grammar.g

Program

conformsTo

Program
transformationATL, QVT, etc.

Inter-technology transformation

TCS

Textual Concrete Syntaxes

TCS Overview

Declaratively specify textual concrete syntaxes for metamodels:
– Customizable/user-friendly,
– Without repeating what is in the metamodels,

Automatically parse programs into models:
– Keep tracing information (e.g. line number),

Automatically serialize models into programs:
– Pretty printing (automatic indentation),

Provide a featured editor.

XText has the same goal. Differences

- In Xtext the metamodel is derived from the grammar.

- TCS binds a concrete syntax to an existing metamodel.

MPS follows an innovative approach:

- No concrete syntax (even if you have this impression)

Metamodel excerpt:
abstract class ModelElement {

attribute name : String;
reference "package" : Package oppositeOf contents;

}

class Package extends ModelElement {
reference contents[*] ordered container : ModelElement oppositeOf "package";

}

Excerpt of corresponding TCS model:
template ModelElement abstract;

template Package main context
: "package" name "{"

contents
"}"

;

Excerpt of generated grammar:

modelElement : package_ ;

package_ : "package" identifier LCURLY

(modelElement (modelElement)* |)

RCURLY ;

Example: excerpt from the definition of KM3 (in KM3 and TCS)

Textual Generic Editor for Eclipse

Eclipse editor plugin:

• Hyperlinks
• Text hovers
• Syntax highlighting
• Outline with bidirectional synchronization

Validation and VerificatioN
(because it’s time to worry about the qualityf of our models!)

Verification vs Validation

V&V is a grand challenge for SE research

Verification: Do the models right

Validation: Do the right models

Only stakeholders can validate (but not direclty the models)

No good solution for verification (problem is EXP)

Stakeholder

Explains

Designer

Models UML
CASE
Tool

UML Model
Transf. M2M:
UML to SBVR

Transf M2T:
SBVR to Natural

Language

SBVR Model
Structured
English
Structured
English

RuleSpeakRuleSpeak

.

English Text

Validate

The double transformation facilitates reusing the intermediate
SBVR representation (e.g. generation for rule-based engines)
The double transformation facilitates reusing the intermediate
SBVR representation (e.g. generation for rule-based engines)

Validation of UML Models

ATL

MofScript

UML2

Input UML ModelInput UML Model

SBVR intermediate representationSBVR intermediate representation

M2M ATL Transf.

product
Concept type: object type
Necessity:each price of product is greater than zero

price
Concept type:role
Definition: integer that represents the value of a
product

product has price
Concept type: is-property-of fact type
Necessity: each product has exactly one
price

family has code
Concept type: is-property-of fact type
Necessity: each family has exactly one code

product belongs to family
Concept type: associative fact type
Necessity: each product belongs to exactly one
family

product
Concept type: object type
Necessity:each price of product is greater than zero

price
Concept type:role
Definition: integer that represents the value of a
product

product has price
Concept type: is-property-of fact type
Necessity: each product has exactly one
price

family has code
Concept type: is-property-of fact type
Necessity: each family has exactly one code

product belongs to family
Concept type: associative fact type
Necessity: each product belongs to exactly one
family

Structured EnglishStructured English

MOFScript
Transf.

Validation of UML Models

context Product inv: price>0

Motivation

Software life cycle

Defect
correction

cost

Find defects ASAP
Models are the first “formal” spec
Goal: Find defects in the model

Model Quality : Verification

Verification checks whether the model satisfies a set of correctness
properties, being satisfiability the most basic one. Liveliness, redundancy,…
can be expressed in terms of this one
A model is satisfiable if it is possible to create a valid instantiation of that
model. Otherwise it is useless, users won’t be able to work with the model
A instantiation is valid if it satisfies all model constraints

id: String

Dept

name: String

Employee
WorksIn* 1

1 0..1Boss
manager

deptworkers

managed

id = “HR”

d1: Dept

name = “Peter”

e1: Employee

WorksIn

Boss name = “Timothy”

e2: Employee

WorksIn

Examples of inconsistency (1)

Course
id: String

Student
name: String

Studies

20..* 1..1

1..1 1..1

Likes

Likes: |Course| = |Student|

Studies: |Course| ≥ 20 * |Student|

Only empty or infinite instances!

Examples of inconsistency (2)

Person
name: string children

ancestor

2

*

// Nobody can be his own ancestor
context Person inv: self.ancestor->excludes(self)

Only empty or infinite instances!

parent

Previous work

Consistent?

Proven?

Formalism / Logics

• Description Logics

• Theorem provers (HOL-OCL)

• SAT (Alloy + UML2Alloy), …

Translate

Prove

Deduc
e

UML model

1. Class diagram

2. OCL constraints

Model Quality: Verification

UML model

1. Class diagram

2. OCL constraints

Solution?

Constraint Satisfaction Problem

1. Variables – basic types + struct/list

2. Domains – finite

3. Constraints – Prolog

4. Property -> Additional Constraint

Translate

Solve

Deduce

Property?

Resolution of the CSP

Define cardinality variables
Constraints on cardinalities

Assign cardinalities

Define attribute variables

Constraints on attributes

Assign attributes

Conclusions: features

Constructive approach
– Answer is example/counterexample
– Result presented graphically

Transparency of the underlying formalism
– User intervention not required
– Translation and proof are automatic

Full OCL support
– Includes arithmetic, iterator expressions, …

Conclusions: drawbacks

Bounded verification
– Maximum number of objects & links
– Domain of each attribute

Incomplete
– No information outside bounded search space

Prototype implementation
Integration with CASE tools
Limitations of OCL parser

Correctness of other modeling elements

The same approach can be applied to check correctness of DSLs (i.e. is the
DSL satisfiable?)

We have adapted the approach to the verification of operations and (graph)
model transformations:
– Applicability
– Weak/Strong Executability
– Determinism
– ….

Planned: adapting them to ATL transformations

Open Challenges

Performance

Incremental verification (if we know the model is correct and change a
small subset of the model I don’t want to reverify everything again(

Feedback. If the model is not correct, can you explain me why?

Choosing the best formalism for a <model, property> pair

Automatic quality assistant that provides hints to the user while modeling

Adaptation to ATL transformations

Megamodeling

AM3 Megamodeling Solution

AM3 provides support for modeling in the large - Global Model
Management

A MDE project usually requires to manage a set of MDE resources
(models, metamodels, transformations, …) and the relationships
between them Megamodel

Similar to a metadata repository on involved modeling artifacts

AM3 provides facilities to create, handle, manage and use the megamodel

AM3 Environment

Megamodel Action (e.g. Transformation chain - ATL ANT script
generation)

AM3 Megamodeling Solution

MaaS: Modeling as a Service

MaaS: Modeling as a Service

Service-orientation becoming the standard way of designing and
deploying software applications over the internet (Software as a
Service or SaaS)

MDE techniques themselves could be moved to the cloud:
– Deployment and on-demand execution of modeling and model-driven

services over the Internet

Cloud as the primary infrastructure for MDE tools?

Benefits:
– Scalability
– modeling mash-ups as a combination of model-driven engineering

services from different vendors,
– Easier deployment and evolution of software applications
– Collaborative modeling
– …

Model-driven Reverse Engineering / ADM

MoDISCO

Instead of adhoc Rev. Eng. Solutions, we use an intermediate
model-based representation of the legacy system

Legacy
Systems

Modernization
helpers

•Documentation
•Impact analysis

•Models
•Viewpoints

•Restructured code
•Migrated code

•Metrics
•Norms checking

Eclipse Modeling

Source code

Databases

Configuration
files

MoDisco

MoDISCO

Modernizing an existing software system implies:
– Describing the information extracted out of the artifacts of this

system
– Understanding the extracted information
– Transforming this information to new artifacts facilitating the

modernization (metrics, document, transformed code, ...)

MoDisco aims at supporting these three phases by providing :
– Metamodels to describe existing systems
– Discoverers to automaticaly create models of these systems
– Generic tools to understand and transform complex models created

out of existing systems

MoDISCO

MoDISCO

Remember since the Java code is represented as an instance of
the Java Metamodel, we could
– Query the model (e.g. using OCL)
– Transform it to other representations (e.g. generate a C# version)
– Analyze it
– …
using existing Eclipse/EMF tools

Tool interoperability

Tool interoperability

MDEcan be useful to bridge tools/platforms/systems

Three steps
– Extraction of the metamodel of each tool (if no explicit metamodel,

derive it from the tool API or storage format(
– Define mappings between metamodels
– Generate transformations to exchange data

Example: Bridging Eclipse and Microsoft Modeling

Eclipse -> EMF. Microsoft SQL Server Modeling (former Oslo) and
DSL Tools.

Practical bridges between the three tools/platforms would be useful
in industrial environments

Most general scenario: tool with variable metamodels need to
interchange both metamodels and models

EMF

DSL ToolsSSM

M2-level

EMF

DSL ToolsSSM

M1-level

Existing

Ongoing work

Legend:

General Architecture

Interchange at the data-level

Operational-level requires porting ATL VM

Other challenges:
– metamodel discovery,
– Technical spaces

Metametamodel
A

MMX

M1

Metametamodel
B

MMX

M1

Metametamodel
B

MMX

M1

M2

M3

Projection

Transformation

conformsTo

BA

Legend:

2
4

5

1

3

Model-driven cartography

For complex business scenarios, the first step is to represent the
current reality of the company
We use model-driven techniques to represent and visualize all the
tools/platforms/components used by an organization, and more
importantly all the dependences between them

This allows a company to validate its tool ecosystem and to reason
on “what if” situations (e.g. what if I replaced tool A with the new
tool B? What other tools would be affected? Can I still exchange
information between the tools? Do I need to create a new
bridge?...)

Model-driven cartography

Ontologies and MDE

Ontologies and MDE

There is no fundamental difference between a model and a
ontology

Can MDE help ontology engineering? YES

Can ontologies help MDE? YES
– Using general knowledge of a domain to suggest corrections or

additions to a user model

Modeling temporal and geographical
information

Temporal and geographical information

It’s definitely interesting but you don’t see many papers on this in
general modeling/MDE conferences

Most approaches based on some kind of UML profile for temporal
and/or geographical information

There are also temporal versions of OCL
– Context Employee inv SalaryCannotDecrease:

self.salary.at(t)>=self.salary.at(t+1)

Can MDE help ontology engineering? YES

Would DSLs help?

Example: MDE for Datawarehouses

Conceptual modeling has proved to be very useful in the development of
data warehouse systems.

Main benefits -> benefits of conceptual modeling:
– Implementation-independent view of the system
– Possibility of (semi)automatic code-generation
– Better maintainability and evolution
– …

Conceptual Modeling of DWH (1/2)

Modeling multidimensional concept at conceptual level
– Data structured in a multidimensional space
– Dimensions specify different ways the data can be viewed,

aggregated, and sorted
• E.g., according to time, store, customer, product, etc.

– Events of interest for an analyst are represented as facts which are
associated with cells or points in the multidimensional space and
which are described in terms of a set of measures

abstracted logical details:
– technology: relational, multidimensional, ...
– logical variations: star, snowflake schema, ...

automatically obtain a logical representation
– model-driven approach

Conceptual Modeling of DWH

An airline’s marketing department wants to analyze the flight activity of each member
of its frequent flyer program

Conceptual Modeling of DWH (1/2)

… once annotated with the Profile becomes …

Conceptual Modeling of DWH

… BUT (there’s always a ‘but’)

Right now, only the structural aspects of the DWH are modeled but
decision makers require a set of multidimensional queries

These multidimensional queries are not specified as part of the
Conceptual Schema (CS) of the DWH

They are only added once the DWH is implemented

As a result:
– Breaks the MDE approach
– The completeness of the DWH cannot be validated until it is

implemented (i.e. DWH contains enough information?)
– Definition of queries requires expertise in the target platform
– No reusability
– …

This limitation affect not only multidimensional models but, in
general, all kinds of CSs (informative function ignored)

Limitations of CM languages

The main restriction for defining queries at the CS level -> poor support
in current CM languages

In particular, CM languages exhibit a lack of rich constructs for the
specification of aggregation functions (key in DWH systems)

Usually only basic ones (sum, avg,…) are covered but DWH systems
require richer analysis functions (e.g. rank, percentile, min, max,…)

For instance, OCL (most popular query language for CSs) only includes
the sum, size and count functions

If a designer wants to know the ranking of frequent flyers he
has to build the ranking function himself

Very time consuming and error-prone

Don’t you prefer to have the “*” operator even if “+” is enough?

Extending OCL

Extension classified in three different groups of functions:

– Distributive functions: can be defined by structural recursion
• Max, min, sum, count, count distinct,…

– Algebraic functions: finite algebraic expressions over distributive
functions

• Avg, variance, stddev, covariance, …

– Holistic functions: the rest
• Mode, descending rank, ascending rank, percentile, median

These operations can be combined to provide more advanced
ones (e.g. top(x) that is implemented using rank)

	New Advances In MDE��Jordi Cabot�INRIA & École des Mines de Nantes,��Nantes, France��http://www.emn.fr/x-info/atlanmod/ ��
	Technical Spaces
	At the core: Model Transformations – ATL
	Relating Models – AMW and AML
	Motivating example: �
	Concepts in mind
	Weaving model
	Core weaving metamodel
	Weaving metamodel extensions
	AMW: Model Weaver
	Matching (Ontology, Schemas)
	AML
	AML
	AML: Concepts (2/2)
	Example: A strategy
	KM3 – Creating your own domain specific language
	UML vs DSLs
	Overview of KM3
	Example: a relational metamodel
	Example: relational metamodel in KM3
	KM3 in Use
	TCS - Textual Syntax Specification
	Textual Concrete Syntaxes
	TCS Overview
	Example: excerpt from the definition of KM3 (in KM3 and TCS)
	Textual Generic Editor for Eclipse
	Validation and VerificatioN�(because it’s time to worry about the qualityf of our models!)�
	Verification vs Validation
	Motivation
	Model Quality : Verification
	Examples of inconsistency (1)
	Examples of inconsistency (2)
	Previous work
	Model Quality: Verification
	Resolution of the CSP
	Conclusions: features
	Conclusions: drawbacks
	Correctness of other modeling elements
	Open Challenges
	Megamodeling
	AM3 Megamodeling Solution
	AM3 Environment
	MaaS: Modeling as a Service
	MaaS: Modeling as a Service
	Model-driven Reverse Engineering / ADM
	MoDISCO
	MoDISCO
	MoDISCO
	MoDISCO
	Tool interoperability
	Tool interoperability
	Example: Bridging Eclipse and Microsoft Modeling
	General Architecture
	Model-driven cartography
	Model-driven cartography
	Ontologies and MDE
	Ontologies and MDE
	Modeling temporal and geographical information
	Temporal and geographical information
	Example: MDE for Datawarehouses
	Conceptual Modeling of DWH (1/2)
	Conceptual Modeling of DWH
	Conceptual Modeling of DWH (1/2)
	Conceptual Modeling of DWH
	… BUT (there’s always a ‘but’)
	Limitations of CM languages
	Extending OCL

