

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 116–131, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Rewriting Queries by Means of Model Transformations
from SPARQL to OQL and Vice-Versa

Guillaume Hillairet, Frédéric Bertrand, and Jean Yves Lafaye

Laboratoire Informatique Image Interaction,
University of La Rochelle, France

{guillaume.hillairet01,fbertran,jylafaye}@univ-lr.fr

Abstract. Implementing language translation is one of the main topics within
the model to model transformation area. Nevertheless, a majority of solutions
promoted by model driven engineering tools focus on transformations related to
modeling languages. In this paper, we address query rewriting by means of
model transformations. This study has been carried out within the context of
implementing an object ontology mapping tool, which could enable bridging
object oriented applications and RDF data sources. This approach allows query-
ing RDF data sources via an object oriented query which is automatically re-
written in SPARQL (RDF query language) in order to access RDF data. Hence,
the developer can freely focus upon the sole application object model. In this
paper, we also present with solutions for translating SPARQL queries into ob-
ject oriented queries, thus allowing the implementation of SPARQL endpoints
for object oriented applications.

Keywords: Model Transformations, Query languages, SPARQL, OQL, ATL.

1 Introduction

The Semantic Web [4] envisions the promotion of the Web of Data as a giant inter-
linked information database [6]; data is expressed and published in a machine-
readable format, which enables automatic processing and inference. Semantic Web
technologies provide three facilities to manage data, namely: a directed labeled graph
model for data representation: RDF [12] (Resource Description Framework); a Web
ontology language (OWL [3]) to express data semantics and a query language for
RDF (SPARQL [16]) which allows to distribute queries across RDF graphs. These
technologies provide a pragmatic way to make the Semantic Web vision operational.
Integrating these technologies within an application development process may be
valuable in two ways: firstly, Web applications may provide their data in RDF and
thus contribute to Web of Data enrichment; secondly, applications could use any
available RDF data on the Web and thus enrich their own content (ex: automated data
mashup [1]).

One way to achieve this is to allow the manipulation of RDF data as plain objects,
thanks to an object/ontology mapping solution, similar to what exists for bridging
relational data and object oriented applications. One main common feature of such
tools is their dealing with query rewriting. During the implementation of an object

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 117

ontology mapping, we actually faced the problem of designing a query rewriting tool.
This tool should allow the developer to successively write a query according to the
application object model, rewrite this object oriented query as a SPARQL query
thanks to the previously defined mapping between the object model and an ontology,
execute the query on a RDF data source, and translate back the results into objects.

In this paper we study the transformation rules between an object oriented query
language and the RDF query language SPARQL. We develop a query rewriting en-
gine on top of an object ontology mapping solution. The query rewriting engine uses
the ATL model transformation language [14]. This study demonstrates a novel appli-
cation area for model transformations.

The remainder of this paper is structured as follows: Section 2 presents related
work. Section 3 introduces the context of this work, which is based on the implemen-
tation of an object ontology mapping solution performing RDF data access through an
object abstraction. Section 4 presents the query languages we chose for this study.
Section 5 explains the query rewriting process implementation via model transforma-
tions. Finally, Section 6 concludes on remarks and future works.

2 Related Work

Providing solutions to expose existing data source content in RDF is of high interest
for insuring a real adoption of the Semantic Web. Many approaches have been pro-
posed, mainly about relational to RDF mapping. The W3C RDB2RDF Incubator
Group produced a corresponding typology. Other states of the art for database to RDF
efforts can be found in [9] and [19]. Some of these approaches provide mechanisms to
query relational data with SPARQL.

R2O [18] and D2RQ [5] are based on declarative mapping languages, and can be
used to build SPARQL endpoints over RDBMs. R2O provides more flexibility and
expressiveness, it needs a referenced ontology. D2RQ directly exposes the database as
Linked Data and SPARQL with D2R server. Using either R2O or D2RQ requires an
initial learning of the language as well as a good knowledge about modeling. Virtuoso
RDF Views [8] stores mappings in a quad storage. While D2RQ and RDF Views
follow the table-to-class, column-to-predicate approach, RDF Views has some addi-
tional methods to incorporate the DB semantics. All mapping languages have more or
less the same complexity and flexibility as SQL. Relational.OWL [11], SPASQL [17]
and DB2OWL [9] are other projects that aim to expose relational data on the Web.

SPOON (Sparql to Object Oriented eNgine) [7] addresses the wrapping of hetero-
geneous data sources in order to build a SPARQL endpoint. The SPOON approach
grounds on an object oriented abstract view of the specific source format (as in ORM
solutions). SPOON provides a run time translation of SPARQL queries into an OO
query language based on the correspondence between the SPARQL algebra and the
monoïd comprehension calculus. Our approach shares many conceptual ideas with the
SPOON project. Nevertheless, the SPOON approach seems to only operate in case of
an ontology that is generated from an object model, and not to offer solutions for
complex mappings. Furthermore, SPOON does not propose any solution for rewriting
OO queries into SPARQL queries.

118 G. Hillairet, F. Bertrand, and J.Y. Lafaye

3 Context of This Work

In this section, we present the context in which our proposal has been developed.
The query rewriting process uses an object ontology mapping solution we are cur-
rently developing. This solution allows both RDF data access through an objet ab-
straction, and conversely ensures an external access to objects via SPARQL queries
on a corresponding RDF representation. It does alleviate the implementation of
SPARQL endpoints.

3.1 Bridging Object Oriented Applications and Semantic Web

The pieces of work presented in this article take place within the context of the devel-
opment of an object ontology mapping solution. We already presented our main ideas
in [10]. We have specified a declarative mapping language and developed a frame-
work that is inspired from object relational mapping framework, but actually deals
with bridging applications and Semantic Web sources.

Such a solution allows the publication of data being generated by an object
oriented application (here, by a Java application) as RDF data. RDF is dynamically
generated and can be used by external applications, taking advantage of the data inte-
gration capabilities offered by the Semantic Web technologies. This allows an easier
data sharing between applications, for example automated data mashups. The second
benefit of such a solution is to allow the developer focusing on the application object
model, without having to care about how objects are represented in RDF, and thus not
having to define SPARQL queries, but rely upon an object query language instead.
One advantage is that the application is no longer bound to a single data source, as
usual in object relational solutions.

The framework we developed considers the set of POJO (Plain Old Java Object)
classes as the domain object model. POJO classes are represented at runtime as an
Ecore model (i.e. a metamodel), thus enabling the representation of object graphs as
models conforming to an Ecore model. Considering the application domain model as
a metamodel is perhaps unusual, but not penalizing, since classes of the application
domain model are supposed to be POJO classes. Such classes generally own proper-
ties that can be accessed by getters and setters; Class operations can specify the class
behavior. This kind of classes can easily be represented in the form of Ecore models.
The use of model enables the execution of model transformations at runtime for both
data transformation and query rewriting. Our framework uses the ATL model trans-
formation language.

The object-oriented model proposed by Ecore [20] and the ontology model proposed
by OWL [3] share many features. Both include the concepts of classes, properties and
multiple inheritances. However, the object model and the ontological model show major
differences as reported in [13]. Object model instances are instance of only one class,
and must conform exactly to the structure (properties and methods) of their class defini-
tion, whereas in RDF/OWL instances may easily deviate from their class definitions or
have no such definitions at all. The purpose of our object ontology mapping approach is
not to provide a solution to the impedance mismatch between object and RDF. We

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 119

rather consider ontologies as schema for online RDF data sources that help us to
identify required data to be used by an application. The mapping language we have
developed helps defining rules for instantiating objects from RDF data, and rules for
publishing objects as RDF data. Figure 1 presents the domain object model that will be
used as an example throughout this article, as well as the ontology associated with it.

Fig. 1. Domain object model (left) and an excerpt of the bibo1 ontology (right)

3.2 Object Ontology Mapping Language

We propose MEO (Mapping Ecore to OWL), a declarative language for the definition
of binary mappings between domain object models and ontologies. This mapping is
based on the well-defined semantics of the ATL language. The mapping language is
compiled into two ATL transformations, via a couple of higher order transformations
(refer to [10] for more details). The first generated transformation takes the object
model as input, and produces an RDF model (according to the ontology vocabulary).
The second generated transformation deals with the opposite way. It takes an RDF
model as input and produces a model that conforms to the application domain model,
thus finally enabling the retrieval of objects from RDF data sources.

Our mapping language has its own abstract and concrete syntaxes developed by us-
ing the TCS toolkit [15]. An excerpt of a mapping is given in Listing 1. The mapping
is composed of two mapping rules indicating the correspondences between on the one
hand the object model class Author and the ontology class foaf:Person, and on the
other hand, the object model class DVDItem with bibo:Film. Let’s note that two on-
tologies are used here, since the bibo ontology uses terms from the foaf2 ontology.

A mapping rule specifies variables to identify the classes to be mapped. Each vari-
able can be initialized thanks to OCL expressions. The classMap operation indicates
which classes are mapped, while the propertyMap operation maps properties. The
get() and put() operations are others kind of propertyMap() operations to be used
when complex property mappings are to be defined.

1 http://bibotools.googlecode.com/svn/bibo-ontology/trunk/doc/index.html
2 http://xmlns.com/foaf/spec/

120 G. Hillairet, F. Bertrand, and J.Y. Lafaye

1
2
3
4
5
6

mapping library
models = {lib : 'http://org.example.library'}
ontology = {

bibo: 'http://purl.org/ontology/bibo/,
 foaf: 'http://xmlns.org/foaf/0.1/'
}

9
10
11
12
13
14

rule Author2Person {
def a is lib:Author
def b is foaf:Person
def getName is String as b.foaf:name.firstLiteral()
def putName is String as a.name
classMap(a, b)

15
16
17
18

put(putName, b.foaf:name)
get(a.name, getName)
propertyMap(a.authorOf, b.foaf:made)

}
19
20
21
22

rule DVDItem2Film {
def a is lib:DVDItem
def b is bibo:Film
classMap(a, b)

23
24
25

propertyMap(a.title, b.dc:title)
propertyMap(a.length, b.po:duration)
propertyMap(a.authors, b.foaf:maker)

}

Listing 1. Excerpt of a mapping declaration in MEO language

3.3 Specification, Implementation and Execution

The object ontology mapping solution provides a Java library offering common meth-
ods for loading/saving objects to/from RDF data sources, as well as a query engine
enabling the query of RDF data source through an object oriented query language.
This library makes use of models and model transformations at runtime. Using this
solution spans three levels:

Specification. The specification step comprises the definition of the object model of
the application. This object model is the data model, and is defined thanks to the
Eclipse Modeling Framework (EMF) in Ecore. The second specification step is the
selection of the ontology that will be mapped to the object model. This ontology can
either be a custom one, designed as a simple mirror of the object model, or a common
previously existing one, possibly extended by extra concepts. The third specification
step is the definition of the mapping between the object model and the ontology
thanks to the MEO language. The mapping can be trivial if the object model and the
ontology are close to one another, or more complex in case there exist significant
differences.

Implementation. The implementation step uses the Java library offered by the ob-
ject/ontology mapping solution for the Java application which has to access RDF data
sources. This library provides methods to save/load objects to/from RDF data sources. In
this implementation step, the preferred scenario supposes the generation of POJO (Plain
Old Java Object) classes from the Ecore model defined during the specification step.

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 121

Execution. The object ontology mapping solution is performed during the execution
of the Java application (during loading/saving objects). The execution step uses the
ATL engine at runtime. ATL model transformations are generated from our mapping
language and executed when translation of objects to or from RDF is required. The
ATL engine is also used at runtime for the query rewriting process as presented in this
paper.

4 Query Languages

This section presents the query languages used by our approach: an object-oriented
language based on OQL and a query language for RDF data (SPARQL). The
object-oriented language chosen for this implementation is HQL (Hibernate Query
Language) [2].

4.1 Object Query Language

The OQL language is a standard developed by the ODMG (Object Data Management
Group) for the expression of queries on object oriented databases. It suffers from too
much complexity and has never been fully implemented. Several variants of this stan-
dard exist in implementations such as: JDOQL, EJBQL or HQL.

Here, we partially redefine the implementation of the HQL language with the help
of MDE toolkits. A metamodel is developed from the grammar of the HQL language.
The textual syntax of the language is defined, according to the metamodel, using the
TCS toolkit. The execution of a query is made either with the Hibernate framework
[2] when needing to retrieve objects form relational data, or by using model transfor-
mations joint with our object ontology mapping tool when needing to retrieve objects
from RDF data. The latter solution is the one presented in this article.

We limit our presentation to HQL queries of type SELECT. The following figure
shows the representation of a query of such a type in conformance to the HQL meta-
model. A SELECT statement is composed of four clauses: SelectFromClause,
WhereClause, OrderByClause and GroupByClause.

SelectFromClause WhereClause OrderByClauseGroupByClause

SelectStatement

1 0..1 0..1 0..1

Fig. 2. The Select Statement representation in the HQL metamodel

In a SELECT query, only the SelectFromClause element is mandatory. Examples
of valid HQL queries (according to our HQL metamodel) are given below:

(a) from Library
(b) select a.name from Author a, a.authorOf item

where item.publishDate > '2000'

122 G. Hillairet, F. Bertrand, and J.Y. Lafaye

 SelectFromClause

SelectClause FromClause

NewExpression PropertyList

0..1 1

FromRange
alias [0..1] : String

1..*

FromClassPath

InClassDeclaration InCollectionDeclaration

Path
1..*

typeName : String

Fig. 3. Representation of the Select From Clause in the HQL metamodel

HQL query results are either lists of objects or lists of values. Query (a) returns the
list of objects of type Library. Query (b) returns a list of values from the property
name of all objects of type Author having published an item after 2000.

The SelectFromClause representation is given in Figure 3. It is composed of an op-
tional SelectClause and a mandatory FromClause. A SelectClause may be of two
types: NewExpression is a clause which creates a new object. PropertyList contains
the list of values or objects resulting from the query. Values are path expressions
composed of one or more terms. A term is either an alias for a type of the object
model, or a property of the object model. A path permits to browse the object model.

The FromClause allows selecting these elements from the object model that will be
used in the query. The declaration of these elements is achieved either by indicating
the desired class in the object model (represented in the HQL metamodel by From-
ClassPath) or indicating an association. Each element of a FromClause is identified
by an alias that will be used for specifying paths in the query.

The WhereClause element represents the constraint part of the query. A WhereClause
basically is an expression which can either be a binary expression (and, or), an operator
expression (=, <, =<, >, >=), a path expression, or a value (string, integer, boolean).

WhereClause

Expression

1

OperatorExpr

Path

BinaryExpr

AndExpr OrExpr

Value

IntValue StringValue

2

Variable PropertyList

0..1

ExprElement
2

Fig. 4. Representation of the Where Clause in the HQL metamodel

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 123

4.2 RDF Query Language (SPARQL)

SPARQL enables the retrieval of data available on the Web in the form of RDF tri-
ples. RDF models data as a directed labeled graph that represents the information on
the Web. SPARQL can be used to express queries across various RDF data sources,
potentially native RDF data, or RDF data generated automatically, e.g. via a SPARQL
endpoint. A SPARQL endpoint is a server managing the conversion of data (relational
or other) into RDF, when answering the receipt of a SPARQL query.

SPARQL is based on the concept of graph patterns for the selection of RDF triples.
A pattern is a triple composed of one or more variables. An example of SPARQL
query is given below.

(c) select ?o where { ?s rdf:type ?o }
(d) construct {

?s dc:title ?t ;
 po:duration ?n ;
 bibo:pages ?p .

}
where {

?s dc:title ?t .
 ?s dc:date ?d .
 filter (?d > '2000') .

optional {?s po:duration ?n}
optional {?s bibo:pages ?p}

}

A SPARQL query returns a list of values (ResultSet) or an RDF graph. For exam-
ple, Query (c), of type SELECT, returns a list of values corresponding to the identifier
(URI) of the types of all resources in an RDF graph. Query (d) returns an RDF graph
constituted by a set of patterns built in accordance to the set of patterns defined in the
WHERE clause. Let’s note that the WHERE clause in Query (d), includes a test value
using a filter, and two optional patterns. An optional pattern is used to select a pattern
potentially not present in the graph.

To carry our approach out, we defined the SPARQL metamodel from the SPARQL
grammar. We derived the concrete syntax from the metamodel and used the TCS
toolkit.

Figure 5 shows the SPARQL metamodel part and addresses the different possible
types for a query. In this study, we are only interested in queries of types SELECT
and CONSTRUCT.

QueryOperation

SelectQuery ConstructQuery DescribeQuery AskQuery

WhereClause

GroupGraphPattern

Variable
1..*

Fig. 5. The different types of Query Operation in the SPARQL metamodel

124 G. Hillairet, F. Bertrand, and J.Y. Lafaye

SPARQL basic concept is the triple. A set of triples forms a graph pattern. The rep-
resentation of this concept in the SPARQL metamodel is given in Figure 6. The
GroupGraphPattern consists of a set of graph patterns (GraphPattern) representing
the various kinds of graph pattern.

 GroupGraphPattern

GraphPattern

TriplesSameSubject OptionalGraphPattern

GroupOrUnionGraphPattern

0..*

GraphNode PropertyList

subject propertyList1..*1

objectpredicate 1 1

FilterPattern

Expression

1..*

Variable Value

Fig. 6. Representation of the Group Graph Pattern in the SPARQL metamodel

The simpler one is the triple represented by the element TriplesSameSubject which
includes a subject and one or more associated properties. Other types are Grou-
pOrUnionGraphPattern for union of patterns; OptionalGraphPattern for optional
patterns and FilterPattern for specifying filters. Graph patterns are created from
nodes. A node is either a variable (named or free) or a primitive type. A named vari-
able is identified by an URI.

5 Model Transformations

This section presents the implementation of our solution for rewriting HQL queries
into SPARQL and vice versa. We use the model transformation language ATL.

5.1 Rewriting HQL in SPARQL

Rewriting into SPARQL an HQL query expressed in the terms of an object model is
carried out by a model transformation that needs two inputs: the mapping defined
between the object model and the ontology and the HQL query itself. The following
figure depicts the overall rewriting process.

The HQL query is first translated into a model that conforms to the HQL meta-
model. This model is used as an input by HQL2SPARQL.atl. The output is the corre-
sponding SPARQL model. During the transformation execution, the object ontology
mapping is used to identify the correspondences between object model terms and
ontology terms. The SPARQL model is sent to a relevant RDF data source. The exe-
cution of the query returns an RDF graph. This graph is then transformed into a model
conforming to the RDF metamodel. The RDF model is used as input by
rdf2model.atl. This transformation is generated by a high order transformation from
the object ontology mapping. The execution of rdf2model.atl supplies the resulting
object graph.

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 125

The HQL query returns a list of items or a list of values or a list of values and ob-
jects. Hereafter, we detail the first case, and only outline the second. The last case is
not yet supported by our implementation. Figure 7 depicts the case where the
SPARQL query returns an RDF graph.

RDF

HQL
Query
model

HQL2SPARQL.atl

Mapping
model

rdf2model.atl

SPARQL
Query
model

model

construct {
?a :type :Author

}
where {
?a :typre :Author ;
…

}

Object
model

Object/Ontology Mapping

(1) Send query to
RDF Data Source

Data Source Manager

Query Engine

RDF
Model

(2) Get results

(3) Results
RDF Model

in

outin

out in

in

c2

model-to-text
select a
from Author a
where ...

text-to-model

Java Objects

Fig. 7. Query execution process : From HQL to SPARQL

Case 1. The query returns a list of values. In this case the HQL query must be trans-
lated into a SPARQL query of type SELECT. This type of query returns a list of val-
ues and not an RDF graph. The result of the HQL query is the result of the SPARQL
query having been generated. No transformation is needed since the data retrieved
actually are plain values.

Case 2. The query returns a list of objects. In this case the HQL query must be trans-
lated into a SPARQL query of type CONSTRUCT. This type of SPARQL query
returns an RDF graph. The latter will be processed by our object ontology mapping
engine, so as to transform the RDF graph into an object model.

The implementation of all cases above is driven by two distinct model transforma-
tions. The transformation rules presented below refer to Case 2. However most of the
rules are common to both cases, particularly for what concerns the generation of
graph patterns from HQL path expressions. Let’s explain more about the transforma-
tion rules, and let’s consider the following query which is defined on the object model
presented in Fig. 1 at Section 3.1.

(e) select item, author from Item item, item.authors author

where item.releaseDate > '2000'

Let Q be the HQL query, Q' the resulting SPARQL query and M the object ontol-

ogy mapping. The transformation HQL2SPARQL is hence defined by:

SPARQL2HQL(Q : HQL, M : MEO) → Q’ : SPARQL

Rule A: For each Path identifying an object belonging to a PropertyList element in
the SelectClause of query Q (if any), a set of triple patterns (TriplesSameSubject) is
generated and added to a ConstructQuery element in query Q’.

126 G. Hillairet, F. Bertrand, and J.Y. Lafaye

The set of triples enables to retrieve each property belonging to a given RDF prop-
erty. The set comprises a triple identifying the type of the resource. This type is re-
trieved according to the mapping. Other triple patterns correspond to the properties
required by the mapping.

Rule B: For each FromClassPath element from Query Q, having a Path size equal to
1 and identifying an object, a set of triple patterns (TriplesSameSubject) is generated
and added to the WhereClause in Query Q’ (cf. figure below).

Rule C: For each FromClassPath from Query Q having a Path element of size N
(N>1) and being a valid expression path according to the object model, a set of N-1
triple patterns is created in Query Q’ by applying recursively the previous rule. (ex-
ample: a.b.c => ?a :b ?ab . ?ab :c ?bc).

Rule D: For each expression in the WhereClause of Query Q being of type Opera-
torExpr and having the symbol ‘=’ as operator, a corresponding triple pattern is cre-
ated in the WhereClause of Query Q’. (example: s.p = o => ?s :p ?o)

Rule E: For each expression of type OperatorExpr in the WhereClause of Query Q
and having an operator that belongs to the following list: (> | >= | < | =<), a triple
pattern and a filter pattern are created in the WhereClause of Query Q’. The filter
pattern contains the expression occurring in the OperatorExpr.
(example: s.p > val => ?s :p ?sp . filter(?sp > val))

5.2 Rewriting SPARQL in HQL

Information systems persistency is usually achieved through relational database,
XML files, etc… However, using an RDF representation is a way to facilitate data
integration and matching, as promoted by the Semantic Web architecture. Semantic
Web technologies provide and enable representation of existing data via a common

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 127

vocabulary (ontologies) that can be extended so that an additional vocabulary could
be taken into. Data represented via RDF graphs can be interlinked with each other,
allowing an easy navigation within a graph representing the global data on the Web.

Providing tools allowing an efficient and transparent transformation of existing
data into RDF is a most important issue Through the abstraction offered by the object
model, we can take advantage of mappings, transformations, converters, etc., that
already exists between the object abstraction and data sources such as relational,
XML, etc. By adding an object ontology mapping tool to these solutions, we can get a
complete conversion chain between heterogeneous data sources and Semantic Web
data. Query rewriting between SPARQL and an object query language (such as HQL)
allows an on the fly generation of RDF data and thus makes it possible to keep data in
existing databases and avoid data replication with its entailed lack of synchronization
and integrity.

The rewriting process from SPARQL to HQL supposes two prerequisites. First an
object model must have been explicitly or implicitly identified (e.g. application
classes in the latter case). Second, an ontology is associated to this object model (see
example Figure 1). Finally, a SPARQL endpoint has been implemented in order to
connect our application to the Web, and thus enable receipt and processing of
SPARQL queries.

The SPARQL endpoint is a Web server receiving queries from others Web applica-
tions. SPARQL queries received are injected in the form of SPARQL model thanks to
a text to model transformation, as depict in figure 8. This SPARQL model is proc-
essed by a set of model transformations and result in a HQL model. During those
transformations, the object ontology mapping helps to determine how terms used in
the SPARQL queries (ontology terms) are converted in terms for the HQL queries
(object mode terms). The resulting HQL query is used by a Java application, and may
be executed thanks to the Hibernate framework on a relational database. Resulting
objects are translated in RDF thanks to our object ontology mapping solution, as de-
picted by figure 8.

Fig. 8. Query execution process: From SPARQL to HQL

The rewriting process of a SPARQL query into the object formalism chains three
steps, corresponding to three model transformations. Let’s illustrate our transforma-
tion rules, by treating the following SPARQL query as an example:

128 G. Hillairet, F. Bertrand, and J.Y. Lafaye

(f) construct {?a ?p1 ?o1 .?c ?p2 ?o2 }
 where {
 ?a dc:date ?c . filter(?c > '2000') .
 ?a foaf:maker ?b

 }

5.2.1 Step 1: Identifying Types in Initial Query
The first step is to identify the types of each variable in the query. All potential types
are determined by querying the ontology associated with the object model. For exam-
ple, Query (f) uses three unbounded variables: ?a, ?b and ?c. By parsing the Where-
Clause of Query (f), we notice that there is no triple pattern using the RDF property
rdf:type which would explicitly indicate the type of variables. However, the triple
patterns use named variables as predicates (named variables are URIs). So, we can
infer the types by identifying the domain and range of the triple pattern predicates.
This can be done by simply querying the ontology. To do so, we rewrite the query
from the initial one, by adding the unknown types in the select clause. Performing the
new query will retrieve the missing information about types. More precisely, the re-
writing process is handled by the model transformation SPARQL2OntQuery.atl (see
Figure 8). For example query (f) is rewritten as follows:

(g) select

 ?dateDom, ?dateRang, ?makerDom, ?makerRang
 where {
 dc:date rdfs:domain ?dateDom ;
 rdfs:range ?dateRang .
 foaf:maker rdfs:domain ?makerDom ;
 rdfs:range ?makerRang .
 }

The SPARQL2OntQuery transformation takes the initial query Q as input and is de-
fined as follows: SPARQL2OntQuery(Q : SPARQL) → Qt : SPARQL

Running Query (g) over the ontology provides all valid types for the free variables.
The result is serialized by a SPARQL Engine implementation (Jena ARQ3) in an
XML format (SPARQL Results XML Format4). A metamodel of this format, marked
as SRF, has been defined in order to allow the next step transformation to reuse the
former results.

5.2.2 Step 2: Refining the Initial SPARQL Query by Adding Types
The second step takes the previous results into account. Types that have been inferred
by performing SPARQL2OntQuery are inserted into the initial SPARQL query so as
to bind the free variables to their valid types. This is done by the model transforma-
tion SPARQLRewrite.atl (see figure 8). This transformation takes the initial query Q,
the ontology O, and the result Rt produces by query Qrw as inputs.

SPARQLRewrite(Q :SPARQL, O :OWL, Rt :SRF) → Qrw : SPARQL

3 http://jena.sourceforge.net/ARQ/
4 http://www.w3.org/TR/rdf-sparql-XMLres/

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 129

The query Qrw is identical to the initial query Q except that triple graph patterns
identifying variables types are added. This set of additional triples patterns is denoted
Tp. For each variable v in Q, having Type t according to Rt, there exists a pattern p
such that p = {?s rdf:type t}. Thus the query (f) rewrites as:

(h) construct {?a ?p1 ?o1 . ?c ?p2 ?o2 }

 where { ?a dc:date ?c . filter(?c > '2000') .
 ?a foaf:maker ?b ;
 ?a rdf:type bibo:Film .
 ?a rdf:type bibo:Book .
 ?b rdf:type foaf:Person
 }

5.2.3 Step 3: Transformation Rules for SPARQL to HQL
The last step encompasses the transformation of SPARQL into HQL. This operation
is trivial once the types of the variables are known i.e. when Step 2 is completed. The
rewriting process is performed by the model transformation SPARQL2HQL.atl. This
transformation takes the query Qrw and the object ontology mapping M as inputs.

SPARQL2HQL(Qrw : SPARQL, M : MEO) → Q’ : HQL

The transformation rules address the translation of SPARQL triples graph patterns

into HQL path expressions. The main transformation rules are the following:

Rule A: For each triple pattern {?s rdf:type <URI>} belonging to the Where-
Clause in query Qrw, a FromClassPath (from ClassName ?s) is created where
ClassName <- map(<URI>) and map the mapping function from ontology to ob-
ject model.

Rule B: For each triple pattern {?s ?p ?o} belonging to the WhereClause in Query
Qrw and having as predicate an ObjectProperty (property with an RDF resource as
range), the triple is translated into an OperatorExp (s.p = o) in query Q’. The
expression in OperatorExp is the Path formed by the subject and predicate of the
corresponding triple pattern and has for RHS expression its object.

Rule C: For each triple pattern {?s ?p val} belonging to the WhereClause in
Query Qrw and val an RDF::Literal then the triple is translated into an OperatorExp
(s.p = val) in query Q’.

Rule D: For each triple pattern {?s ?p ?o . filter(?o op val)} belonging to
the WhereClause in Query Qrw then an OperatorExp (s.p op val) is created in
query Q’.

6 Conclusion

In this paper, we presented a query rewriting process implemented by model transfor-
mations. These transformations exploit a mapping model that describes the relationship

130 G. Hillairet, F. Bertrand, and J.Y. Lafaye

between the elements of a model object with those of an ontology. It was also necessary
to define the metamodels of the two query languages handled in these transformations:
HQL as an object oriented query language and SPARQL as a graph pattern query lan-
guage for the RDF data model.

The Model Driven Engineering makes it possible to manage complexity inherent in
the translation of requests built on quite different data models. The rules of transfor-
mation presented in this paper, implemented using ATL language, include transfor-
mations from HQL to SPARQL and opposite directions. The main goal of this work is
to facilitate the use and the enrichment of the many collections of RDF data available
on the Web without having simultaneously to master the object technologies and
Semantic Web technologies.

This work is fully implemented, but it has not been heavily evaluated and so a
comparison with others similar approaches, in terms of response time and scalability
has not yet been done. Future works include the evaluation of the tool and its exten-
sion so as to cope with transformation rules taking more complex query languages
features into account, namely join for HQL and ‘optional’ and ‘union’ patterns for
SPARQL.

References

1. Ankolekar, A., Krötzsch, M., Tran, T., Vrandecic, D.: The two cultures: Mashing up Web
2.0 and the Semantic Web. Web Semantics: Science, Services and Agents on the World
Wide Web 6, 70–75 (2008)

2. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications (2006)
3. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,

P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation 10,
2006–10 (2004)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284, 28–
37 (2001)

5. Bizer, C., Seaborne, A.: D2RQ: treating non-RDF databases as virtual RDF graphs. In: In-
ternational Semantic Web Conference ISWC (posters) (2004)

6. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web Demon-
strations Track. In: 4th European Semantic Web Conference, Innsbruck, Austria (2007)

7. Corno, W., Corcoglioniti, F., Celino, I., Della Valle, E.: Exposing Heterogeneous Data
Sources as SPARQL Endpoints through an Object-Oriented Abstraction. In: Asian Seman-
tic Web Conference (ASWC 2008), pp. 434–448 (2008)

8. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Proceedings of the 1st
Conference on Social Semantic Web. GI-Edition- Lecture Notes in Informatics (LNI),
vol. P-113. Bonner Kollen Verlag (2007) ISSN 1617-5468

9. Ghawi, R., Cullot, N.: Database-to-ontology mapping generation for semantic interopera-
bility, 2007. In: Third International Workshop on Database Interoperability, InterDB
(2007)

10. Hillairet, G., Bertrand, F., Lafaye, J.Y.: MDE for publishing Data on the Semantic Web,
Transform and Weaving Ontologies in MDE (TWOMDE). In: Czarnecki, K., Ober, I.,
Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301. Springer, Hei-
delberg (2008)

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 131

11. de Laborda, C.P., Conrad, S.: Bringing Relational Data into the SemanticWeb using
SPARQL and Relational. OWL. IEEE Computer Society, Washington (2006)

12. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax
Specification (1999)

13. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: Embedding Semantic Web data into ob-
ject-oriented languages. In: Web Semantics: Science, Services and Agents on the World
Wide Web (2008)

14. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

15. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In: Proceedings of the 5th international conference on
Generative programming and component engineering, pp. 249–254 (2006)

16. Prud’hommeaux, E., Seaborne, A.: others: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008)

17. Prud’hommeaux, E.: Adding SPARQL Support to MySQL (2006)
18. Rodriguez, J.B., Corcho, O., Gomez-Perez, A.: R2o: an extensible and semantically based

database-to-ontology mapping language. In: SWDB (2004)
19. Rodriguez, J.B., Gomez-Perez, A.: Upgrading relational legacy data to the semantic web.

In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp. 1069–
1070. ACM, New York (2006)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-
work, 2nd edn. Addison-Wesley Professional, Reading (2008)

	Rewriting Queries by Means of Model Transformations from SPARQL to OQL and Vice-Versa
	Introduction
	Related Work
	Context of This Work
	Bridging Object Oriented Applications and Semantic Web
	Object Ontology Mapping Language
	Specification, Implementation and Execution

	Query Languages
	Object Query Language
	RDF Query Language (SPARQL)

	Model Transformations
	Rewriting HQL in SPARQL
	Rewriting SPARQL in HQL

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

