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Classical Paradigms for Information Retrieval

The two most common paradigms are:
I Query answering: databases, search engines, ...

I expressive query language (SQL, keywords)
I difficult for end-users (SQL) or ambiguous (keywords)
I no navigation among answers
I problem of empty results

I Hierarchical navigation: file systems, documents, many
websites, ...

I easy to use (mimick physical organization)
I e.g., MyPhotos/2010/ICFCA_Agadir/

I paths form a rigid query language
I restricted navigation

Need for combining querying and navigation!



New Paradigms for Information Retrieval

A new paradigm has recently emerged under several names:
I Conceptual Navigation [Godin et al 1993] based on Formal

Concept Analysis (FCA)
I the basis of the LIS approach
I FCA is also used for data mining and machine learning

I Dynamic Taxonomies [Sacco 2000] and Faceted Search
[Hearst 2003]

I domains: human-computer interaction, information systems
I becoming the de facto standard in e-commerce websites

(Yahoo!Shopping) and others (DBLP, Microsoft Sharepoint)



The LIS Approach

LIS = Logical Information Systems [original idea of Olivier
Ridoux]

I tight combination of querying and navigation
I navigation places are defined by queries
I navigation links are query refinements
I navigation never leads to a dead-end (safeness)

I logical representation and automated reasoning for object
properties and queries (expressiveness)

I and, or, not, date intervals, string patterns, taxonomies,
etc.

I based on Formal Concept Analysis (FCA)
I extended with logics (LCA) [Ferré and Ridoux 2000]
I the concept lattice is the navigation graph

I automatically generated and synchronized with data

I a faceted search-like user interface (ease-of-use)



Camelis

I implementation of LIS in OCaml
I download:
http://www.irisa.fr/LIS/ferre/camelis/

I 2 interfaces:
I desktop graphical user interface
I multi-user web interface: Abilis [Benjamin Sigonneau,

Véronique Abily]
I give it a try at

http://ledenez.insa-rennes.fr/abilis/

I applications:
I personal data: photos, music, biblio, files, ...
I collections: biblio, journals and conferences
I collaborative decision making [Mireille Ducassé]



Camelis: a screenshot



Camelis: a short demo

1. photos of Australia
I only Sydney, except Sydney

2. photos of all ICFCA conferences
I only those with people

3. photos of animals and flowers
I only in Australia, only kangaroos and koalas



Camelis: summary

Camelis enables
I to combine querying and navigation
I to build complex queries by navigating
I to show only relevant navigation links from any query
I to alternate freely navigation and querying in a same

search
This tight combination is based on (Logical) Concept Analysis.
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The Need for Relations

From collections of objects to graphs of objects:
I personal data: people and organizations, genealogy
I geographical data: distance, topological relations (e.g.,

overlaps, contains)
I bioinformatics data: sequences, gene networks, molecules
I linguistic data: discourse structure, parse trees
I software data: execution traces, models (UML)

Need to search, explore, learn from such complex data, with
the same LIS properties: safeness, expressiveness, and
ease-of-use



Existing Work on Relations

I Semantic Web
I standard languages for representing, reasoning, querying,

and sharing such relational data
I e.g., RDF (data), RDFS/OWL (ontology), SPARQL (queries)

I Formal Concept Analysis
I power-context families [Wille 1997]

separated navigation spaces for objects and relationships
I Relational Concept Analysis (RCA) [Rouane et al 2007]

useful for data-mining
I Faceted Search

e.g., Ontogator, BrowseRDF, SlashFacet [2006]
I most make use of Semantic Web data
I a few extend faceted search queries

I with limited expressiveness compared to SPARQL
I mostly traversal of relation paths
I none of disjunction, negation, and circular pattern



What is the Semantic Web?

I also called the Web of Data
I an evolving extension of the WWW (W3C)
I a set of languages, standards, tools to make the web

understandable by machines (“semantics”)
I the convergence of research work in knowledge

representation, logics, databases, object-oriented
modelling: e.g., conceptual graphs, description logics,
Prolog, Datalog, relational databases



Semantic Web Languages

I RDF: resource description
I RDFS, OWL, SWRL: complex reasoning
I SPARQL: querying
I SPARQL-Update: updating



RDF: Resource Description Framework

I A base is a set of triples, i.e., an (hyper-)graph
I nodes are URIs, literals or blank nodes
I an edge is a triple (subject, predicate, object)
I the predicate is a property URI, hence a node itself

I Examples of triples:
I lis:ferre foaf:name "Sebastien Ferre"
I lis:ferre foaf:birth _:b1
I _:b1 foaf:date "1976-03-19"ˆˆxsd:date
I lis:ferre :affiliation
<http://www.univ-rennes1.fr/>



RDFS: RDF Schema

I extends the RDF vocabulary
I enables the description of taxonomies and simple ER

schemas
I RDF(S) classes: rdfs:Resource, rdfs:Literal,
rdfs:Class, rdf:Property, rdfs:Datatype

I RDF(S) properties: rdf:type, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range

I implies limited forms of inference
e.g., :father rdfs:range :man and ?X :father ?Y
implies ?Y rdf:type :man



SPARQL: a Query Language for RDF

An example

SELECT DISTINCT ?p ?n ?a
FROM <http://www.irisa.fr/personnel.rdf>
WHERE { ?p a foaf:Person ;

foaf:name ?n .
OPTIONAL { ?p ex:age ?a }
FILTER (! REGEX(?n, "Bob")) }

ORDER BY ASC(?n) LIMIT 10 OFFSET 20}

I SPARQL 1.1 adds negation, aggregations, subqueries
I similar expressivity to SQL



From Concept Analysis to Semantic Web

I Formal Concept Analysis (FCA)
I object→ resource
I attribute→ class
I incidence→ property rdf:type
I attribute set→ query

I Logical Concept Analysis (LCA)
I valued attribute→ property and resource
I pattern→ SPARQL filter
I subsumption→ transitive properties

I Relational Concept Analysis (RCA)
I relation→ property
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Extension of the LIS approach to relations

Two perspectives:
I Conceptual Navigation: Relational Conceptual Navigation
I Faceted Search: Semantic Faceted Search

with the following results:
1. semantic compatibility with Semantic Web languages

I RDF as a description language (data)
I SPARQL as a query language
I constraint: only binary relations

2. theoretical properties of conceptual navigation
I safeness: no dead-end
I expressiveness: nearly same expressivity as SPARQL
I completeness: every safe query is reachable

3. positive user evaluation (ease-of-use)
I only a few controls added to the user interface
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Overview

A schema for the navigation graph and the user interface.

answers
(extension)

index
(intension)

navigation
place (concept)

query

navigation links

Navigation links are query transformations



User Interface: a Screenshot of Camelis 2



The Query Language LISQL

I has the semantics and expressivity of SPARQL
I where answers are restricted to sets instead of tables
I SELECT <var> WHERE <graph pattern>

I has a syntax similar to Description Logics
I it is more concise
I it avoids most variables
I query = complex class + focus (underlined subclass)



LISQL: Complex Classes

complex class first-order formula example
C C(x)

individual x = individual John
?v x = v ?X
? > ?
a class class(x) a person
P C1 ∃y .(P(x , y) ∧ C1(y)) father : John
C1 and C2 C1(x) ∧ C2(x) a man and ?X
C1 or C2 C1(x) ∨ C2(x) John or Paul
not C1 ¬C1(x) not father : ?



LISQL: Complex Properties

complex property first-order formula example
P P(x , y)

property : pr(x , y) father :
property of pr(y , x) mother of
property with pr(x , y) ∨ pr(y , x) married with
trans P P+(x , y) trans parent :
opt P P(x , y) ∨ x = y opt trans parent of

Syntactic sugar:
I in = opt trans part of

I contains = opt trans part :



LISQL: an Example

I a person and birth : (year : (1601 or
1649) and place : (?X and in England)) and
father : birth : place : not ?X

I who was born in 1601 or 1649 at some place X in England,
and has a father born at a place that is not X

I same complex class with focus on ?X and in England
I at which place (X) in England, a person was born in 1601 or

1649, and the father of this person was not born
I equivalent SPARQL query (7 variables)
SELECT ?x WHERE { ?p a person. ?p birth
?b. ?b year ?y FILTER (?y=1601 ||
?y=1649). ?b place ?x. ?x in England. ?p
father ?f. ?f birth ?fb. ?fb place ?fl
FILTER ?fl != ?x }
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The Index

I used as a summary of the query answers
I a set of complex classes
I organized as a generalization tree:

I ’George Washington’
I ?X
I a man
I mother : ?

I mother : ’Mary Ball’
I mother : a woman
I mother : birth : ?
I mother : father : ?

I ...
I expanded on demand, because of its recursive definition,
I restricted to relevant elements (safeness)

I ext(q and C) 6= ∅



The Navigation Links

Navigation links are query transformations
I they all apply at the current focus
I and: q′ := q and C, for each C taken in the index

I already present in LIS and faceted search
I or: q′ := q or ?

I and not: q′ := q and not ?

I name: q′ := q and ?v , for one fresh variable v
I focus change: for each focus of the query



The Navigation Links

Navigation links are query refinements

1. ?

2. a man

3. a man and name: ?

4. a man and name: ?X

5. a man and name: (?X and ’Georges’)

6. a man and name: (?X and (’Georges’ or ?))

7. a man and name: (?X and (’Georges’ or ’John’))

8. a man and name: (?X and (’Georges’ or ’John’))

9. a man and name: (?X and (’Georges’ or ’John’)) and father: name: ?

10. a man and name: (?X and (’Georges’ or ’John’)) and father: name: ?X

11. a man and name: (?X and (’Georges’ or ’John’)) and father: name: ?X



The Navigation Links
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Theoretical Properties of the Navigation Graph

Theorem (safeness)
For every navigation path going from ? to q, ext(q) 6= ∅.

I there is no dead-end
I frustation of empty results is avoided

Theorem (completeness)
For every query q that has answers at each focus, there is a
finite navigation path going from ? to q.

I there is no unreachable query
I users never need to edit the query
I even stronger result than in non-relational LIS



User Evaluation

I 20 students (from IFSIC and INSA Rennes)
I dataset: genealogy of George Washington (70 persons)
I 18 questions of increasing difficulty

I property chains, negation, disjunction, variables
I the number of navigation steps ranges from 0 to 12

I results
I all answered correctly to ≥11/18 questions
I 8/20 answered correcty to ≥16/18 questions
I the average time spent on the test is 40min ([21,58]min)
I for each category of question, ≥18/20 answered correctly

to at least one question of the category
I for most categories, success rate and response time

improve on 2nd and 3rd queries



Some Questions of the Study

1. How many women are named Mary ?
a woman and name : Mary

2. Which man was born in 1659 ?
a man and birth : year : 1659

3. Which man is married with a woman born in 1708 ?
a man and married with (a woman and birth :
year : 1708)

4. Which women have for mother Jane Butler or Mary Ball ?
a woman and mother : (’Jane’ or ’Mary’)

5. How many women have a mother whose death’s place is
not Warner Hall ? a woman and mother : death :
place : not ’Warner Hall’

6. Who died in the same area where they were born ?
a person and death : place : in ?X and
birth : place : in ?X
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Conclusion

I We have shown that the LIS approach, and therefore both
Conceptual Navigation and Faceted Search,

I can be used on RDF graphs
I with an expressive SPARQL-like query language
I where users can entirely rely on navigation
I without ever falling in dead-ends
I after a short training stage

I We have implemented this approach:
I first but partially in GEOLIS [Olivier Bedel]:

plus spatial relations (distance, topology)
I then completely in CAMELIS 2 (demo on demand)



Future Work

A common framework for future works in the LIS team:
I expressiveness: n-ary relations, implicit relations (e.g.,

spatial relations), grouping and aggregation [PhD P. Allard]
I query syntax: closer to natural language, multilingual

[A. Foret]
I usability: evaluation and improvement for lambda users

[visiting PhD L. Spagnolo]
I knowledge edition: combining an expressive

description/update language (e.g., SPARUL) and an
interactive construction process [PhD A. Hermann]




	Logical Information Systems (LIS)
	Combining Querying and Navigation
	Logical Information Systems

	The Semantic Web
	LIS for the Semantic Web
	Conclusion and Future Work

