Interpretation of visual and range data for robotics – 3d maps and color

Dietrich Paulus

Arbeitsgruppe Aktives Sehen Universität Koblenz–Landau Computervisualistik – Koblenz

La Rochelle – June 7th 2011

Robots must prove their skills for autonomous exploration of the environment in several leagues in RoboCup. In the @home-league the environment is made like a living room; in the rescue-league the robots search for victims in collapsed buildings. Both challenges will be introduced shortly to motivate the technological problems that will be detailed in the following.

The exploration of an unknown environment is possible by sensors that capture data from varying positions. This results in a map where the robot marks its own position. As location and environment are unknown, this sounds like a egg-hen problem known as SLAM. For the 2d case this is considered to be solved. For 3d sensors and maps this is subject of current research. Several measurement systems are commercially available. We show their principles and possible use by examples. We also show our own solution.

In both scenarios, objects need to be found. This task is mostly accomplished by fusion of 3d data and color images. The task of object recognition and it's underlying algorithmic problem, namely image segmentation, is not completely solved yet, although it has been investigated for many years. We present recent work of color image segmentation.

Dietrich Paulus

Professor in Comptutaional Visualistics Universität Koblenz–Landau

- active vision
- medical image processing
- model-based image analysis
- color vision
- 3d reconstruction
- robotics

Paulus (2001)

Münzenmayer et al. (2006)

- Paulus et al. (1993)
- Gossow et al. (2010)
- Decker et al. (2008)
- Nüchter et al. (2009)

閁

Computational Visualitics Koblenz

- Magdeburg
- Koblenz
- A certain brand name
 - interdisciplinary curriculum (80% comp. sc., 20% arts, etc.)
 - visual equivalent to computational linguistics
 - focus on graphics and vision, modeling, and linguistics
 - 650 students (35% female)
 - ▶ +500 in comp. science

Bachelor programs for

- Computer Science
- Computational Visualistics
- Information Management

Master programs for

- Computer Science
- Computational Visualistics
- Information Management
- Information Systems

Strong influence of army in Koblenz:

- Important military garnison
- Military clinics
- several other clinics

Outline

3D Maps

- Scientific work
- Results from robotics
- own results
- comparison to other results
- market

Color Segmentation

- Scientific work
- results from joint work in Poitiers with Noël Richard and Mihai Ivanovici

▶ own system Robotics → Sensors (Color / Segmentation) → Maps (Objects) → Rooms algorithms, problems, solutions, techniques

Arbeitsgruppe Aktives Sehen Prof. Dietrich Paulus

Robotik

- Autonomous robots
- mapping using laser sensors
- sensor fusion
- SICK Robot Day
- RoboCup Rescue
- RoboCup@Home

Why robots in household? 3 D's of robotics

Dull

Dirty

Dangerous

Challenges

Technology is pushed by challenges (cmp. postal address database)

- RoboCup Rescue (following disasters in Kobe)
- RoboCup @home
- Grand Challenge

Technological transfer, also mobile devices

Introduction <u>____</u>

Rescue

RoboCup Rescue

RoboCup Rescue Arena 2007; Roboter Team Resquake

- Robot league
- Simulation league (Virtual Robots USAR Sim)
- Simulation league (Agent Simulation)

Rescue

RoboCupRescue: Arena /1

Task: Find victims and map the disaster site (20 min) Arena size: about 20 m \times 20 m

Rescue

RoboCupRescue: Arena /2

Orange/Red Arena

Yellow Arena

- for remote controlled robots
- stepfields, stairs, steep ramps
- focus on mobility, HRI Arena developed and built by NIST (U.S. National Institute of Standards and Technology)

- for autonomous robots
- random maze, ramps (10°)
- focus on autonomy (victim) detection, SLAM)

Introduction

RoboCup@Home

(Quelle: Robbie X)

- Different tasks in houshold
- Mobile manipulation: "'Bring me some juice"'
- Follow me
- Learn and recognize locations

Arena 1

Scenario

- changed each year
- more and more complex
- realistic and typical for the country where the challenge takes place
- Home, office, garden...
- 2010: Shopping Mall

Go Get It!

Robot needs to find objects and return them to start position

- 2 2 robots at the same time
- Give them one order and one hint
- Challenges
 - HMI (natural language)
 - reliable naviagation
 - Object recognition
 - Object manipulation

Videos on LISA and Robbie can be found in robots.uni-koblenz.de

Introduction

Automotive

DARPA Challenges / Autonomous Cars

Grand Challenge 2004/2005: Desert

Stanley Stanford Drives through Desert Urban Challenge 2007: City

Winner: Boss Tartan Racing, CMU CarLO

Leonie, TU Braunschweig. Drives through Braunschweig (real-life)

...more to come in near future (driving assistance, autonomous
trucks, ...)
Sources:
http://cs.stanford.edu/group/roadrunner//old/announcements.html
http://www.ifr.ing.tu-bs.de/forschung/stadtpilot/stadtpilot.php

Problem Statement

Autonomous robots

- Knowledge on environment
- Path planning
- Exploration
- Object recognition (obstacles, tools, objects, humans, ...)
- Self localization

Result: maps of *environment (including objects)* Method: SLAM

Introduction	
00000000000000	
Automotive	

Software Architecture @ AGAS

Automotive

Representation 2D

map of building

computed automatically

Sensors	Mapping	3D processing	Objects
•••••	0000000000000000	0000000000	
Color Cameras			

Illumination change

Problem: Recording of object and scene with different illuminations Solution: Normalization

- 1. Intensiy normalization
- 2. CCN Finlayson et al. (1998), (extended in Csink et al. (1998))
- 3. PCA (followed by rotation Csink et al. (1998))

o●oooooo Color Cameras

3D processing

RGB Rotation Gray-world assumption

3D processing

Linear radiometric calibration

3D processing

Objects

Discrete Device Sensitivity

According to Alsam and Finlayson (2002): a sum of L = 31 samples

$$s_k(\mathbf{x}) = \sum_{\lambda=1}^{L} E_{\lambda} \cdot \rho_{\lambda}(\mathbf{x}) \cdot R_{k,\lambda} \cdot \Delta \lambda \quad . \tag{1}$$

Vector $\mathbf{E} = [E_{\lambda}]_{\lambda=1...L}$: spectral energy distribution for light, Vector $\boldsymbol{\rho}(\mathbf{x}) = [\rho_{\lambda}(\mathbf{x})]_{\lambda=1...L}$: discrete reflectance at position \mathbf{x} Matrix $\mathbf{R} = [R_{k,\lambda}]_{k=1,...,K,\lambda=1...L}$ sensitivity curves of the sensors

Result in Paulus et al. (2002)

Using SVD, regularization, smoothing, rank constraints, further constraints:

$$\mathbf{r} = \left(\mathbf{V}\mathbf{P}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}} + \mu \cdot \mathbf{G}\right)^{-1}\mathbf{V}\mathbf{P}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{s} \quad . \tag{2}$$

3D processing

Objects

Distance Measuring

Goal: 3D / Distance Measurements Methode

- 3D camera (TOF, Laser, ...)
- 2D cameras + geometric considerations (Stereo, ...)

3D processing

Objects

Hokuyo URG-04LX

Fig.: URG-04LX

Fig.: mounted scanner

3D processing

Objects

Hokuyo URG-04LX

Fig.: Laser scan

Techical data

- scanning range: 240°, 20 4000 mm
- resolution: 682 Punkte (0,352°)
- distance resolution: 1 mm
- error: max. 1%
- scan time: 100 ms

3D processing

Sensor fusion

- Image
- Laser
- ► GPS
- Odometry
- Inertial sensor
- Kalman Filter

 3D processing

Objects

Representations for maps

- 2D maps
 - Occupancy Grid Maps
 - Feature maps
 - Topological maps
 - Semantic maps (including annotations, objects, ...

Mapping ○●○○○○○○○○○○○○ 3D processing

Objects

Map correctness

- locally consistent maps
- globally consistent maps
- globally correct maps

 3D processing

Local Maps

Sensors Color Cameras 2D Sensors Sensor Fusion

Mapping 2D Maps Loop Closing 3D processing 3D Sensors 3D Maps Objects

3D processing

ICP-algorithm

- ► model *M*
- ► data D
- center of gravity (c_m, c_d)
- ▶ register m'_i, d'_i

3D processing

ICP-algorithm

- find corresponcences
- limit d_{max}
- minimize error function:

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i} \|\mathbf{m}'_{i} - (\mathbf{Rd}'_{i} + \mathbf{t})\|^{2}$$

repeat until

- below threshold
- reached maximum number of iterations

Minimization of ICP function

Estimation of transformation by

- SVD
- Quaterninons
- Dual quaternions
- Helix transformation

Nüchter et al. (2010)

Comparison:

(Lorusso et al. 1995)

- SVD is best
- Dual quaternions: good for large data sets

Mapping 000000●0000000000 3D processing

Global Maps

Sensors Color Cameras 2D Sensors Sensor Fusion Mapping

2D Maps Loop Closing 3D processing 3D Sensors 3D Maps Objects

3D processing

Objects

The SLAM problem

Simultaneous Localization and Mapping

Goal

Find most probable map and most probable robot location using previously recorded sensor information.

maximize

 $p(x_{1:t}, m|z_{1:t})$

- x_{1:t}: robot path (positions x₁ to x_t)
- ▶ *m*: map
- z_{1:t}: sensor data

3D processing

Objects

SLAM for Robbie-6

Incremental Mapping

Simplification

- only one map
- position depends on previous estimate plus motion

$$p(x_t|x_{t-1}, z_t, m)$$

- x_t: current location
- x_{t-1}: previous location
- z_t: current sensor data (laser and odometry)
- ▶ *m*: map

Most probable position is used to extend map.

3D processing

Objects

Motion model

Fig.: Location densities after move of robot

Mapping 000000000●00000 3D processing

Objects

Particle filter

Fig.: Location density

3D processing

Condensation algorithm

Mapping ○○○○○○○○○○○○○ 3D processing

Objects

Measurement step

Fig.: Examples for weights of measures

Mapping ○○○○○○○○○○○○○○○○○○○ 3D processing

Objects

Loop Closing

Problems in maps: Visible without ground truth!

Map with blurry "shadow walls"

Map with broken part

Ideas:

- **1.** Analyze **contrast** of the map ($\triangleright \rho_1$)
- **2.** Analyze **directions** of the walls ($\triangleright \rho_2$) Idea see Pellenz and Paulus (2009)

3D processing

Objects

ρ_1 : Sharpness of a map example

Map \mathbf{m}_1 generated using 50 particles: Contrast ρ_1 (\mathbf{m}_1) = 87.4

Map \mathbf{m}_2 generated using 1000 particles: Contrast ρ_1 (\mathbf{m}_2) = **92.6**

Hyper-Partikelfilter

Idea: Use a particle filter of localization particle filters!

- ► Localization Particle Filter (LPF): Particles $\pi_i = \langle \mathbf{x}^{[i]}, w \mathbf{x}^{[i]} \rangle$, with $\mathbf{x}^{[i]} = (x^{[i]}, y^{[i]}, \theta^{[i]})$.
- ► Hyper Particle Filter (HPF): Particles q_j = ⟨y^[j], wy^[j]⟩ with y^[j] = (lpf^[j], m^[j]) where lpf^[j] is a particle filter of type LPF and m^[j] the corresponding map.
- The weight $w \mathbf{y}^{[i]}$ is determined by the map quality measures.

3D processing

Objects

3D Sensors

Measurement principle of 3D-Laser Range Finder

Move scan device:

Interpretation of visual and range data for robotics – 3d maps and color

Sensors

Mapping

3D processing

Objects

Velodyne I

Grand Challenge

Objects

Velodyne II

3D processing

Objects

Volumes and surfaces

3D

2.5 D

Dimension

We should call it 2.5 d

🕑 – Interpretation of visual and range data for robotics – 3d maps and color

3D processing

Objects

3D map types

- elevation mapps
- extended elevation maps
- multi-surface maps

(Source: Pfaff et al. (2007))

3D processing

Objects

3D map types

3D maps

- 3D point clouds
- 3D octal trees
- 3D triangulated meshs

(source: own MappingCube) (source: Nüchter et al. (2007)) (source: Nüchter et al. (2007), Pfaff et al. (2007))

3D processing 00000000000 Objects

Represention 3D

CityGML Groeger et al. (2008)

²Fort Konstantin, Koblenz, recorded with V&R MappingCube ³From http://www.citygml.org/fileadmin/citygml/docs/CityGML_FME2009.pdf

🖑 – Interpretation of visual and range data for robotics – 3d maps and color

³all images from http://www.citygml.org/fileadmin/citygml/docs/CityGML_FME2009.pdf

🕑 – Interpretation of visual and range data for robotics – 3d maps and color

3D processing

Objects

MappingCube 3D V&R Vision & Robotics I

MappingCube 3D

3D Scan at Control 2010

3D processing

Objects

MappingCube 3D V&R Vision & Robotics I

Properties:

- online registration of scans
- all in one
- use android phone for remote control

Single scan of stair case

³http://visionrobotics.de

Measurement principle of V&R MappingCube

- Rotating laser scanner
- Controller built into device
- Processing directly by system
- Registration right after scan
- registered scans available immediately after scan (e.g. on android phone)

Product details - see http://www.vision-robotics.de

3D processing

Object recognition

@Home Furniture People Household articles Rescue Victims Danger Signs Gossow et al. (2008) Obstacles Stairs **Cars** Road signs Roads Cars Pedestrians

Techniques: Multi-Spectral, Color, Segmentation, Fusion

3D processing

Objects

Joint work with

- Mihai Ivanovici, Braşov, România⁴
- Noël Richard, Poitiers, France⁵

Color information for image segmentation

- textures
- fractal features
- graph cuts
- CSC Priese and Rehrmann (1993)
- performance evaluation application specific semantical
- \rightarrow unified, rigorous, formal description

⁴mihai.ivanovici@miv.ro ⁵richard@sic.univ-poitiers.fr

3D processing

Objects

Neigborhoods I

(a) 4– (b) 8– (c) 6–connectivity connectivity

Fig.: Pixel neighborhoods

Neigborhoods II

Definition

We define that two pixel locations P = (x, y) and P' = (x', y') are *k*-neighbors if one belongs to the other's *k*-connectivity.

Definition

Let *S* be a sequence of pixel locations $[P_I]_{I=1...L}$; we call *S k*-connected if each pair of adjacent pixel locations is in a *k* neighborhood. We call a set of pixel locations $R = \{P_i\}$ *k*-connected if each pair *P*, *P'* of pixel locations from *R* there exists a *k*-connected path $S = [P_I]_{I=1...L}$; from *P* to *P'* which is completely in *R*, i.e. $P_1 = P$, $P_L = P'$, and $\forall I \in \{1, ..., L\} : P_I \in R$.

Definition

3D processing

Objects

Neigborhoods III

We call a set of connected pixels a region.

3D processing

Objects

Homogeneity I

Simple classical definition

$$\gamma(R_i) = \begin{cases} \mathsf{TRUE} & \text{if } \forall P \in R_i : ||I(P) - \mu(R_i)|| \le \theta \\ \mathsf{FALSE} & \text{otherwise} \end{cases} , \quad (3)$$

 $\mu(R)$ is the mean $\mu(R) = \frac{1}{||R||} \sum_{P' \in R} I(P')$, θ is some threshold. Required:

norm

addition

(NB: not valid in HSV!)

Homogeneity II

Other homogeneity criteria

- texture
- fractal dimension
- other color spaces (L*a*b*, Luv)
- statistics

Color similarity:

Equidistant coordinates in RGB, YUV, XYZ do not define colors perceptually similar MacAdam (1942):

ightarrow Color-specific distances: the ΔE family⁶

⁶More in Sect. 12

🕑 – Interpretation of visual and range data for robotics – 3d maps and color

Sensors

3D processing

Objects

CSC I

Fig.: Hexagonal hierarchical island structure for CSC and some code elements.

3D processing

Objects

CSC II The algorithm was introduced in Priese and Rehrmann (1993).

3D processing

Objects

CSC III

Fig.: Example of linked code elements and corresponding graph structure.

CSC IV

Properties

- very fast (almost real time)
- stable
- hierarchical / multi-resolution
- operates in spatial domain
- can use arbitrary criteria of homogeneity

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpriese/do http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpriese

3D processing

Objects

Victims

Color image - CSC - 180 scans - 60 scans

Objects

Result of 6D SLAM by A. Nüchter

Color SURF Gossow et al. (2008)

3D processing

input

jseg

CSC

3D processing

Objects

RoboCup Rescue

Robots as autonomous life savers

Results:

- flexible software architecture
- stable mapping
- Winner RoboCup GermanOpen
 2007, 2008, 2009 & 2010 (autonomy)
- Winner RoboCup World Championship 2007 & 2008 (autonomy)

3D processing

Summer School

- ▶ 12.-16.09.2011 Workshop on Robotic Architectures ROS
- 19.-23.09.2011 ADAPT summerschool on Cyber Physical Systems

Grants for students and PhD students available!

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/uebergreifend/adapt2011 Thanks for your attention!

GPS

- System of 24 satellites
- radio signals
- transmit path parameters and GPS time

⁷http://www.landscaper.de/GPS_Navigation/GPS_Grundprinzip/gps_p5.gif

🕑 – Interpretation of visual and range data for robotics – 3d maps and color

Problems with GPS

- Drift
- occlusion
- accuracy
- z-coordinate

Linear radiometric calibration

Discrete Device Sensitivity I

According to Alsam and Finlayson (2002): a sum of L = 31 samples

$$s_k(\mathbf{x}) = \sum_{\lambda=1}^{L} E_{\lambda} \cdot \rho_{\lambda}(\mathbf{x}) \cdot R_{k,\lambda} \cdot \Delta \lambda \quad . \tag{4}$$

Vector $\mathbf{E} = [E_{\lambda}]_{\lambda=1...L}$: discrete spectral energy distribution for light,

Vector $\rho(\mathbf{x}) = [\rho_{\lambda}(\mathbf{x})]_{\lambda=1...L}$: discrete reflectance at position \mathbf{x} Matrix $\mathbf{R} = [R_{k,\lambda}]_{k=1,...,K,\lambda=1...L}$ discrete spectral sensitivity curves of the sensors

Discrete Device Sensitivity II

Re-write matrix **R** as a vector

$$\mathbf{r} := (R_{1,1} \dots R_{1,L}, R_{2,1} \dots R_{2,L}, \dots R_{K,1} \dots R_{K,L})$$

Define a $(KN \times LK)$ - matrix **A** consisting of sensor responses measured at *N* points of either zeros or products $E_{\lambda} \cdot \rho_{\lambda}$

$$s = Ar$$
 (5)

Discrete Device Sensitivity III

In Paulus et al. (2002)

- Instead of iterative optimization techniques weaker constraints lead to a linear problem
- solved using SVD(A) = UΣV^T
- derive a linear approximation of calibration parameters

$$\mathbf{r} = \left(\mathbf{V}\mathbf{P}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}} + \mu \cdot \mathbf{G}\right)^{-1}\mathbf{V}\mathbf{P}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{s} \quad . \tag{6}$$

with

- Regularization parameter μ
- Matrix P to enforce rank

Lisa

Interpretation of visual and range data for robotics – 3d maps and color

Gesture recognition

Gesture recognition

Grasp objects

MMI

MMI

Safety

Definition

A discrete *image I* is a function $I : \mathbb{N}^2 \to \mathbb{V}$. Locations P belong to the image support, i.e. a finite rectangular grid, i.e. $D = [0, \dots, M] \times [0, \dots, N] \subseteq \mathbb{N}^2$. For gray-scale images $\mathbb{V} = [0, \dots, 255] \subseteq \mathbb{N}$; for color images we (usually) have $\mathbb{V} = [0, \dots, 255]^3 \subseteq \mathbb{N}^3$. An image element X is called a pixel which has a pixel location $\Lambda(X) = P$ and a pixel value $\Upsilon(X) = I(\Lambda(X)) = v \in \mathbb{V}$.

Segmentation of an image *I*:

image is decomposed into a number $N_{\rm R}$ of regions R_i , with $i = 1..N_{\rm R}$, which are disjoint non-empty sections of I.

Fig.: Theoretical example of segmentation.

Regions are *connected* sets of pixel locations that exhibit some similarity in the pixel *values* which can be defined in various ways.

The segmentation of an image I into regions R_i is called *complete*, if the regions exhibit the properties of Fu and Mui (1981) formalized in the following:

Definition

Region Label Image $I_{\rm R}$: result of segmentation. $I_{\rm R} : \mathbb{N}^2 \to \{1, \dots, N_{\rm R}\}.$ This label image is also called a *map*.

Distances and Measures I

Equidistant coordinates in RGB, YUV, XYZ do not define colors perceptually similar MacAdam (1942). Color-specific distances: the ΔE family

$$\Delta E = \sqrt{(L_1^* - L_2^*)^2 + (a_1^* - a_2^*)^2 + (b_1^* - b_2^*)^2} \quad . \tag{7}$$

Distances and Measures II

Physiologically, the eye is more sensitive to hue differences than chroma and lightness and ΔE does not take this aspect into account.

Improvements by CIE: ΔE_{94} and finally ΔE_{2000}

$$\Delta E_{94} = \sqrt{\left(\frac{\Delta L}{K_L S_L}\right)^2 + \left(\frac{\Delta C}{K_C S_C}\right)^2 + \left(\frac{\Delta H}{K_H S_H}\right)^2} \quad , \qquad (8)$$

Color Textures I

For a set Q of N pixel locations $Q = \{P_1, P_2, ..., P_N\}$ let m be the mean position of all pixels: $m = \frac{1}{N} \sum_{i=1}^{N} P_i$. If Q is classified into C classes Q_i according to the color values at those locations, then let m_i be the mean position of the N_i points of class Q_i : $m_i = \frac{1}{N_i} \sum_{P \in Q_i} P_i$. Then let $S_{\rm T} = \sum_{q \in Q} ||q - m||^2$, the total spatial variance and

$$S_{\rm W} = \sum_{i=1}^{C} S_i = \sum_{i=1}^{C} \sum_{q \in Q_i} ||q - m_i||^2 ,$$
 (9)

the spatial variance relative to the Q_i classes. The measure J is defined as:

$$J = \frac{S_B}{S_W} = \frac{S_T - S_W}{S_W} \quad , \tag{10}$$

Interpretation of visual and range data for robotics – 3d maps and color

Color Textures II

The *J*-image is a gray-scale pseudo-image whose pixel values are the *J* values calculated over local windows centered on each pixel position. The higher the local *J* value is, the more likely that the pixel is near region boundaries.

(a) 5 × 5

(b) 9 × 9

(c) 21×21

Fig.: J-images for three sizes of the local window.

Own Publications I

- L. Csink, Dietrich Paulus, Ulrike Ahlrichs, and Benno Heigl. Color Normalization and Object Localization. In Volker Rehrmann, editor, *Vierter Workshop Farbbildverarbeitung*, pages 49–55, Koblenz, 1998. F" olbach.
- Peter Decker, Dietrich Paulus, and Tobias Feldmann. Dealing with degeneracy in essential matrix estimation. In *Proceedings of the International Conference on Image Processing (ICIP 2008)*, pages 1964–1967, San Diego, California, U.S.A., 2008. IEEE Press.
- D. Gossow, J. Pellenz, and D. Paulus. Danger sign detection using color histograms and surf matching. In *International Workshop on Safety, Security and Rescue Robotics*, 2008.
- David Gossow, Peter Decker, and Dietrich Paulus. Extending surf to the color domain. In CGIV 2010 - Fifth European Conference on Colour in Graphics, Imaging and Vision, pages 215–221, 2010.

Own Publications II

Christian Münzenmayer, Dietrich Paulus, and Thomas Wittenberg. A spectral color correction framework for medical applications. *IEEE Transactions on Biomedical Engineering*, 53(2):254–265, 2006.

Andreas Nüchter, Jan Elseberg, Peter Schneider, and Dietrich Paulus. Linearization of rotations for globally consistent n- scan matching. In Proceedings of the IEEE International Conference Robotics and Automation (ICRA '10), pages 1373–1379, Anchorage, Alaska, 2009.

Andreas Nüchter, Jan Elseberg, Peter Schneider, and Dietrich Paulus. Linearization of rotations for globally consistent n- scan matching. In Proceedings of the IEEE International Conference Robotics and Automation (ICRA '10), pages 1373–1379, Anchorage, Alaska, 2010.

Dietrich Paulus. Aktives Bildverstehen. Der Andere Verlag, Osnabrück, 2001.

Dietrich Paulus, Andreas Winzen, and H. Niemann. Knowlege based object recognition and model generation. In Donald W. Braggins, editor, *Proceedings Europto 93, Computer Vision for Industry, München*, pages 382–393, Bellingham, WA, 1993. SPIE. Proceedings 1659.

Own Publications III

Dietrich Paulus, Joachim Hornegger, and L. Csink. Linear approximation of sensitivity curve calibration. In K.-H. Franke, editor, 8. Workshop Farbbildverarbeitung, pages 3–10, Ilmenau, 2002. Schriftenreihe des Zentrums f"ur Bild- und Signalverarbeitung.

Johannes Pellenz and Dietrich Paulus. Stable mapping using a hyper particle filter. In *RoboCup Symposium 2009*, 2009.

Other Publications I

- A. Alsam and G. Finlayson. Recovering spectral sensitivities with uncertainty. In *CGIV*, pages 22–26, Poitiers, France, 2002. IS&T.
- G. Finlayson, B. Schiele, and J. Crowley. Comprehensive colour image normalization. In H. Burkhard and B. Neumann, editors, *Computer Vision* — *ECCV '98*, number 1406, pages I/475–490, Heidelberg, 1998. Springer.
- K. Fu and J. Mui. A survey on image segmentation. Pattern Recognition, 13 (1):3 – 16, 1981.
- G. Groeger, T. H. Kolbe, A. Czerwinski, and C. Nagel. Opengis city geography markup language (citygml) encoding standard. Technical Report 1.0.0, Open Geospatial Consortium Inc., 2008.
- D. MacAdam. Visual sensitivities to color differences in daylight. JOSA, 32(5): 247–273, 1942.
- A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d slam for 3d mapping outdoor environments. *Journal of Field Robotics Special Issue on Quantitative Performance Evaluation of Robotic and Intelligent Systems*, 24(8-9):699–722, 2007.

Other Publications II

- P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Siegwart. Towards mapping of cities. In *Proceedings of the International Conference* on *Robotics and Automation*, pages 4807–4813, 2007.
- J. Poppinga, A. Birk, and P. Kaustubh. A characterization of 3d sensors for response robots. pages 264–275. Robo Cup 2009, 2009.

References I

- A. Lorusso, D. Eggert, and R. Fisher. A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations. In *Proceedings of the 4th British Machine Vision Conference (BMVC '95)*, pages 237 – 246, Birmingham, England, September 1995. URL citeseer.nj.nec.com/lorusso95comparison.html.
- Lutz Priese and Volker Rehrmann. On hierarchical color segmentation and applications. In *Proceedings*, pages 633–634. Proceedings of the Conference on Computer Vision and Pattern Recognition, 1993.