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Ad Personam Koblenz Now BTB

Robots must prove their skills for autonomous exploration of the environment
in several leagues in RoboCup. In the @home-league the environment is made
like a living room; in the rescue-league the robots search for victims in
collapsed buildings. Both challenges will be introduced shortly to motivate the
technological problems that will be detailed in the following.
The exploration of an unknown environment is possible by sensors that capture
data from varying positions. This results in a map where the robot marks its
own position. As location and environment are unknown, this sounds like a
egg-hen problem known as SLAM. For the 2d case this is considered to be
solved. For 3d sensors and maps this is subject of current research. Several
measurement systems are commercially available. We show their principles and
possible use by examples. We also show our own solution.

In both scenarios, objects need to be found. This task is mostly accomplished

by fusion of 3d data and color images. The task of object recognition and it’s

underlying algorithmic problem, namely image segmentation, is not completely

solved yet, although it has been investigated for many years. We present recent

work of color image segmentation.
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Ad Personam Koblenz Now BTB

Dietrich Paulus

Professor in Comptutaional Visualistics
Universität Koblenz–Landau

◮ active vision Paulus (2001)

◮ medical image processing Münzenmayer et al. (2006)

◮ model-based image analysis Paulus et al. (1993)

◮ color vision Gossow et al. (2010)

◮ 3d reconstruction Decker et al. (2008)

◮ robotics Nüchter et al. (2009)
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Ad Personam Koblenz Now BTB

olar
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Ad Personam Koblenz Now BTB

Computational Visualitics Koblenz

◮ Magdeburg

◮ Koblenz

A certain brand name

◮ interdisciplinary curriculum (80% comp. sc., 20% arts, etc.)

◮ visual equivalent to computational linguistics

◮ focus on graphics and vision, modeling, and linguistics

◮ 650 students (35% female)

◮ +500 in comp. science
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Ad Personam Koblenz Now BTB

Bachelor programs for

◮ Computer Science

◮ Computational
Visualistics

◮ Information Management

Master programs for

◮ Computer Science

◮ Computational
Visualistics

◮ Information Management

◮ Information Systems
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Ad Personam Koblenz Now BTB

Strong influence of army in Koblenz:

◮ Important military garnison

◮ Military clinics

◮ several other clinics
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Ad Personam Koblenz Now BTB

Outline

3D Maps

◮ Scientific work

◮ Results from robotics

◮ own results

◮ comparison to other results

◮ market

◮ own system

Color Segmentation

◮ Scientific work

◮ results from joint work in
Poitiers with Noël Richard
and Mihai Ivanovici

Robotics → Sensors (Color / Segmentation) → Maps (Objects) →
Rooms
algorithms, problems, solutions, techniques
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Introduction

Arbeitsgruppe Aktives Sehen
Prof. Dietrich Paulus

Robotik

◮ Autonomous robots

◮ mapping using laser
sensors

◮ sensor fusion

◮ SICK Robot Day

◮ RoboCup Rescue

◮ RoboCup@Home
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Introduction

Why robots in household?
3 D’s of robotics

Dull Dirty Dangerous
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Introduction

Challenges

Technology is pushed by challenges (cmp. postal address database)

◮ RoboCup Rescue (following disasters in Kobe)

◮ RoboCup @home

◮ Grand Challenge

◮ Technological transfer, also mobile devices
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Introduction

Rescue

RoboCup Rescue

RoboCup Rescue Arena 2007; Roboter Team Resquake

◮ Robot league

◮ Simulation league (Virtual Robots - USAR Sim)

◮ Simulation league (Agent Simulation)
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Introduction

Rescue

RoboCupRescue: Arena /1

t

Task: Find victims and map the disaster site (20 min)
Arena size: about 20 m × 20 m
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Introduction

Rescue

RoboCupRescue: Arena /2

Orange/Red Arena

◮ for remote controlled robots

◮ stepfields, stairs, steep ramps

◮ focus on mobility, HRI

Yellow Arena

◮ for autonomous robots

◮ random maze, ramps (10o)

◮ focus on autonomy (victim
detection, SLAM)

Arena developed and built by NIST (U.S. National Institute of Standards and Technology)
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Introduction

Lisa@Home

RoboCup@Home

(Quelle: Robbie X)

◮ Different tasks in houshold
◮ Mobile manipulation: ”‘Bring me some juice”’
◮ Follow me
◮ Learn and recognize locations
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Introduction

Lisa@Home

Arena 1

◮ Scenario
◮ changed each year
◮ more and more complex
◮ realistic and typical for the

country where the challenge
takes place

◮ Home, office, garden...
◮ 2010: Shopping Mall
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Introduction

Lisa@Home

Go Get It!

Robot needs to find objects and return
them to start position

◮ 2 2 robots at the same time

◮ Give them one order and one hint

◮ Challenges
◮ HMI (natural language)
◮ reliable naviagation
◮ Object recognition
◮ Object manipulation
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Introduction

Lisa@Home

Videos on LISA and Robbie can be found in
robots.uni-koblenz.de
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Introduction

Automotive

DARPA Challenges / Autonomous Cars
Grand Challenge
2004/2005: Desert

Stanley
Stanford
Drives through
Desert

Urban Challenge
2007: City

Winner: Boss
Tartan Racing,
CMU

CarLO

Leonie, TU
Braunschweig.
Drives through
Braunschweig
(real-life)

. . . more to come in near future (driving assistance, autonomous
trucks, . . . )
Sources:
http://cs.stanford.edu/group/roadrunner//old/announcements.html

http://www.ifr.ing.tu-bs.de/forschung/stadtpilot/stadtpilot.php
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Introduction

Automotive

Problem Statement

Autonomous robots

◮ Knowledge on environment

◮ Path planning

◮ Exploration

◮ Object recognition (obstacles, tools, objects, humans, . . . )

◮ Self localization

Result: maps of environment (including objects)
Method: SLAM

– Interpretation of visual and range data for robotics – 3d maps and color Slide 21



Introduction

Automotive

Software Architecture @ AGAS

System
Core

Device

Message queue

Worker

Device
driver

Hard-
ware

Third-
party

software

Application

Device

Worker

Hard-
ware

Glue code

Technical software

Application indep. software

Application software

Module

ModuleModule
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Introduction

Automotive

Representation 2D

map of building computed automatically
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Sensors Mapping 3D processing Objects

Color Cameras

Illumination change
Problem: Recording of object and scene with different illuminations
Solution: Normalization

R

G

B

m

φ′

n

0

(1, 1, 1)T

1. Intensiy normalization
2. CCN Finlayson et al. (1998), (extended in Csink et al. (1998))
3. PCA (followed by rotation Csink et al. (1998))
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Sensors Mapping 3D processing Objects

Color Cameras

RGB Rotation Gray-world assumption
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Sensors Mapping 3D processing Objects

Color Cameras

Linear radiometric calibration

Color Checker

x

ρλ(x)

E (λ)

CCD-Chip Rk(λ)

Image sk(x)

1
K
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Sensors Mapping 3D processing Objects

Color Cameras

Discrete Device Sensitivity
According to Alsam and Finlayson (2002): a sum of L = 31 samples

sk(x) =

L
∑

λ=1

Eλ · ρλ(x) · Rk,λ ·∆λ . (1)

Vector E = [Eλ]λ=1...L: spectral energy distribution for light,
Vector ρ(x) = [ρλ(x)]λ=1...L: discrete reflectance at position x

Matrix R = [Rk,λ]k=1,...,K ,λ=1...L sensitivity curves of the sensors

Result in Paulus et al. (2002)

Using SVD, regularization, smoothing, rank constraints, further
constraints:

r =
(

VPΣ2VT + µ ·G
)−1

VPΣUTs . (2)
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Sensors Mapping 3D processing Objects

2D Sensors

Distance Measuring

Goal: 3D / Distance Measurements
Methode

◮ 3D camera
(TOF, Laser, . . . )

◮ 2D cameras + geometric considerations
(Stereo, . . . )
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Sensors Mapping 3D processing Objects

2D Sensors

Hokuyo URG-04LX

Fig.: URG-04LX
Fig.: mounted scanner
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Sensors Mapping 3D processing Objects

2D Sensors

Hokuyo URG-04LX

Fig.: Laser scan

Techical data

◮ scanning range: 240o , 20 - 4000 mm

◮ resolution: 682 Punkte (0,352o )

◮ distance resolution: 1 mm

◮ error: max. 1%

◮ scan time: 100 ms
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Sensors Mapping 3D processing Objects

Sensor Fusion

Sensor fusion

◮ Image

◮ Laser

◮ GPS

◮ Odometry

◮ Inertial sensor

Kalman Filter
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Sensors Mapping 3D processing Objects

2D Maps

Representations for maps

◮ 2D maps
◮ Occupancy Grid Maps
◮ Feature maps
◮ Topological maps
◮ Semantic maps (including

annotations, objects, . . .
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Sensors Mapping 3D processing Objects

2D Maps

Map correctness

◮ locally consistent maps

◮ globally consistent maps

◮ globally correct maps
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Sensors Mapping 3D processing Objects

2D Maps

Local Maps

Sensors
Color Cameras
2D Sensors
Sensor Fusion

Mapping
2D Maps
Loop Closing

3D processing
3D Sensors
3D Maps

Objects
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Sensors Mapping 3D processing Objects

2D Maps

ICP-algorithm

◮ model M

◮ data D

◮ center of gravity (cm, cd )

◮ register m′
i ,d

′
i

b

b

b

b

b

b

b

b

b
b

b
b

b b b b

b

b
b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

bb

b

b

b

b
b

b

b

b

b

b

b

×
c.o.g.

×
c.o.g.

– Interpretation of visual and range data for robotics – 3d maps and color Slide 35



Sensors Mapping 3D processing Objects

2D Maps

ICP-algorithm

◮ find corresponcences

◮ limit dmax

◮ minimize error function:

E (R, t) =
∑

i ‖m
′
i − (Rd′i + t)‖2

repeat until

◮ below threshold

◮ reached maximum number
of iterations

b
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Sensors Mapping 3D processing Objects

2D Maps

Minimization of ICP function

Estimation of transformation by

◮ SVD

◮ Quaterninons

◮ Dual quaternions

◮ Helix transformation Nüchter et al. (2010)

Comparison: (Lorusso et al. 1995)

◮ SVD is best

◮ Dual quaternions: good for large data sets
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Sensors Mapping 3D processing Objects

2D Maps

Global Maps

Sensors
Color Cameras
2D Sensors
Sensor Fusion

Mapping
2D Maps
Loop Closing

3D processing
3D Sensors
3D Maps

Objects
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Sensors Mapping 3D processing Objects

2D Maps

The SLAM problem
Simultaneous Localization and Mapping

Goal

Find most probable map and most probable robot location using
previously recorded sensor information.

maximize
p(x1:t ,m|z1:t)

◮ x1:t : robot path (positions x1 to xt)

◮ m: map

◮ z1:t : sensor data
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Sensors Mapping 3D processing Objects

2D Maps

SLAM for Robbie-6
Incremental Mapping

Simplification

◮ only one map

◮ position depends on previous estimate plus motion

p(xt |xt−1, zt ,m)

◮ xt : current location

◮ xt−1: previous location

◮ zt : current sensor data (laser and odometry)

◮ m: map

Most probable position is used to extend map.
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Sensors Mapping 3D processing Objects

2D Maps

Motion model

Fig.: Location densities after move of robot
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Sensors Mapping 3D processing Objects

2D Maps

Particle filter

x

p

Fig.: Location density

Particle = state +
weight

P = (X , π)
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Sensors Mapping 3D processing Objects

2D Maps

Condensation algorithm
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Sensors Mapping 3D processing Objects

2D Maps

Measurement step

plane

Fig.: Examples for weights of measures
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Sensors Mapping 3D processing Objects

Loop Closing

Problems in maps: Visible without ground truth!

q

Map with blurry “shadow walls” Map with broken part

Ideas:

1. Analyze contrast of the map (⊲ ρ1)

2. Analyze directions of the walls (⊲ ρ2)

Idea see Pellenz and Paulus (2009)
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Sensors Mapping 3D processing Objects

Loop Closing

ρ1: Sharpness of a map example

Map m1 generated using 50
particles: Contrast ρ1 (m1) = 87.4

Map m2 generated using 1000
particles: Contrast ρ1 (m2) = 92.6
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Sensors Mapping 3D processing Objects

Loop Closing

Hyper-Partikelfilter

Idea: Use a particle filter of localization particle filters!

◮ Localization Particle Filter (LPF):
Particles πi = 〈x[i ],wx[i ]〉, with x[i ] = (x [i ], y [i ], θ[i ]).

◮ Hyper Particle Filter (HPF):
Particles qj = 〈y[j ],wy[j ]〉 with y[j ] = (lpf [j ],m[j ])

where lpf [j ] is a particle filter of type LPF and m[j ] the
corresponding map.

◮ The weight wy[i ] is determined by the map quality measures.
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Sensors Mapping 3D processing Objects

3D Sensors

Measurement principle of 3D-Laser Range Finder

Move scan device:

1

1Poppinga et al. (2009)
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Sensors Mapping 3D processing Objects

3D Sensors

Velodyne I
Grand Challenge
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Sensors Mapping 3D processing Objects

3D Sensors

Velodyne II
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Sensors Mapping 3D processing Objects

3D Sensors

Volumes and surfaces

3D 2.5 D

Dimension

We should call it 2.5 d
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Sensors Mapping 3D processing Objects

3D Maps

3D map types

◮ 212D maps
◮ elevation mapps
◮ extended elevation maps
◮ multi-surface maps

(Source: Pfaff et al. (2007))
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Sensors Mapping 3D processing Objects

3D Maps

3D map types

◮ 3D maps
◮ 3D point clouds
◮ 3D octal trees
◮ 3D triangulated meshs

(source: own MappingCube) (source: Nüchter et al. (2007)) (source: Nüchter et al. (2007), Pfaff et al. (2007))
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Sensors Mapping 3D processing Objects

3D Maps

Represenation 3D

point cloud CityGML Groeger et al. (2008)

2 3

2Fort Konstantin, Koblenz, recorded with V&R MappingCube
3From http://www.citygml.org/fileadmin/citygml/docs/CityGML_FME2009.pdf
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Sensors Mapping 3D processing Objects

3D Maps

3all images from http://www.citygml.org/fileadmin/citygml/docs/CityGML_FME2009.pdf
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Sensors Mapping 3D processing Objects

3D Maps

MappingCube 3D V&R Vision & Robotics I

MappingCube 3D 3D Scan at Control 2010
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Sensors Mapping 3D processing Objects

3D Maps

MappingCube 3D V&R Vision & Robotics I

Properties:

◮ online registration of
scans

◮ all in one

◮ use android phone for
remote control

Single scan of stair case

3http://visionrobotics.de
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Sensors Mapping 3D processing Objects

3D Maps

Measurement principle of V&R MappingCube

◮ Rotating laser scanner

◮ Controller built into device

◮ Processing directly by system

◮ Registration right after scan

◮ registered scans available immediately after scan (e.g. on
android phone)

Product details – see
http://www.vision-robotics.de
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Sensors Mapping 3D processing Objects

Object recognition

@Home
Furniture
People
Household articles

Rescue
Victims
Danger Signs
Gossow et al.
(2008)
Obstacles
Stairs

Cars
Road signs
Roads
Cars
Pedestrians

Techniques:
Multi-Spectral, Color, Segmentation, Fusion
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Sensors Mapping 3D processing Objects

Joint work with

◮ Mihai Ivanovici, Braşov, România4

◮ Noël Richard, Poitiers, France5

Color information for image segmentation

◮ textures

◮ fractal features

◮ graph cuts

◮ CSC — Priese and Rehrmann (1993)

◮ performance evaluation – application specific – semantical

→ unified, rigorous, formal description

4mihai.ivanovici@miv.ro
5richard@sic.univ-poitiers.fr
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Sensors Mapping 3D processing Objects

Neigborhoods I

q

(a) 4–
connectivity

(b) 8–
connectivity

(c) 6–connectivity

Fig.: Pixel neighborhoods
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Sensors Mapping 3D processing Objects

Neigborhoods II
Definition

We define that two pixel locations P = (x , y) and P ′ = (x ′, y ′) are
k-neighbors if one belongs to the other’s k-connectivity.

Definition

Let S be a sequence of pixel locations [P l ]l=1...L; we call S
k-connected if each pair of adjacent pixel locations is in a k
neighborhood. We call a set of pixel locations R = {P i}
k-connected if each pair P ,P ′ of pixel locations from R there
exists a k-connected path S = [P l ]l=1...L; from P to P ′ which is
completely in R , i.e. P1 = P , PL = P ′, and
∀l ∈ {1, . . . , L} : P l ∈ R .

Definition
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Sensors Mapping 3D processing Objects

Neigborhoods III

We call a set of connected pixels a region.
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Sensors Mapping 3D processing Objects

Homogeneity I
Simple classical definition

γ(R i ) =

{

TRUE if ∀P ∈ R i : ||I (P)− µ(R i)|| ≤ θ

FALSE otherwise
, (3)

µ(R) is the mean µ(R) = 1
||R||

∑

P′∈R I (P ′), θ is some threshold.

Required:

◮ norm

◮ addition

(NB: not valid in HSV!)
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Sensors Mapping 3D processing Objects

Homogeneity II

Other homogeneity criteria

◮ texture

◮ fractal dimension

◮ other color spaces (L*a*b*, Luv)

◮ statistics

Color similarity:
Equidistant coordinates in RGB, YUV, XYZ do not define colors
perceptually similar MacAdam (1942):
→ Color-specific distances: the ∆E family6

6More in Sect. 12
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Sensors Mapping 3D processing Objects

CSC I

Fig.: Hexagonal hierarchical island structure for CSC and some code
elements.
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Sensors Mapping 3D processing Objects

CSC II
The algorithm was introduced in Priese and Rehrmann (1993).

– Interpretation of visual and range data for robotics – 3d maps and color Slide 67



Sensors Mapping 3D processing Objects

CSC III

ABCDE GFH

123456789

E F G

H

A

1

23

45

6

7

8
9

BCD

Fig.: Example of linked code elements and corresponding graph
structure.
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Sensors Mapping 3D processing Objects

CSC IV

Properties

◮ very fast (almost real time)

◮ stable

◮ hierarchical / multi-resolution

◮ operates in spatial domain

◮ can use arbitrary criteria of homogeneity

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpriese/dow
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpriese
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Sensors Mapping 3D processing Objects

Victims

Color image – CSC – 180 scans – 60 scans
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Sensors Mapping 3D processing Objects

Result of 6D
SLAM by A.
Nüchter
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Sensors Mapping 3D processing Objects
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Sensors Mapping 3D processing Objects

Color SURF Gossow et al. (2008)
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Sensors Mapping 3D processing Objects

input jseg csc
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Sensors Mapping 3D processing Objects

RoboCup Rescue
Robots as autonomous life savers

Results:

◮ flexible software architecture

◮ stable mapping

◮ Winner RoboCup
GermanOpen
2007, 2008, 2009 & 2010
(autonomy)

◮ Winner RoboCup World
Championship 2007 & 2008
(autonomy)
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Sensors Mapping 3D processing Objects

Summer School

◮ 12.-16.09.2011 Workshop on Robotic Architectures ROS

◮ 19.-23.09.2011 ADAPT summerschool on Cyber Physical
Systems

Grants for students and PhD students available!
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/uebergreifend/adapt2011

Thanks for your attention!

– Interpretation of visual and range data for robotics – 3d maps and color Slide 76

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/uebergreifend/adapt2011


GPS Radiometric Calibration Lisa Segmentation - formally JSEG References Own Other References

GPS

7

◮ System of 24 satellites

◮ radio signals

◮ transmit path parameters and GPS time

7http://www.landscaper.de/GPS_Navigation/GPS_Grundprinzip/gps_p5.gif
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Problems with GPS

◮ Drift

◮ occlusion

◮ accuracy

◮ z-coordinate
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Linear radiometric calibration

Color Checker

x

ρλ(x)

E (λ)

CCD-Chip Rk(λ)

Image sk(x)

1
K
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Discrete Device Sensitivity I
According to Alsam and Finlayson (2002): a sum of L = 31 samples

sk(x) =
L

∑

λ=1

Eλ · ρλ(x) · Rk,λ ·∆λ . (4)

Vector E = [Eλ]λ=1...L: discrete spectral energy distribution for
light,
Vector ρ(x) = [ρλ(x)]λ=1...L: discrete reflectance at position x
Matrix R = [Rk,λ]k=1,...,K ,λ=1...L discrete spectral sensitivity curves
of the sensors
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Discrete Device Sensitivity II
Re-write matrix R as a vector

r := (R1,1 . . .R1,L,R2,1 . . .R2,L, . . .RK ,1 . . .RK ,L)

Define a (KN × LK ) - matrix A consisting of sensor responses
measured at N points of either zeros or products Eλ · ρλ

s = Ar (5)
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Discrete Device Sensitivity III

In Paulus et al. (2002)

◮ Instead of iterative optimization techniques weaker constraints
lead to a linear problem

◮ solved using SVD(A) = UΣVT

◮ derive a linear approximation of calibration parameters

r =
(

VPΣ2VT + µ ·G
)−1

VPΣUTs . (6)

with

◮ Regularization parameter µ
◮ Matrix P to enforce rank
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Lisa
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Challenges

Menschliche Faktoren

Algorithmen

Softwarearchitektur

Hardware

Sicherheit
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Hardware I

Laserscanner

(6m Reichweite)

Mikrofon
Time-Of-Flight-Kamera

Farbkamera

Schwenk-/Neige-

Einheit
Bildschirm

Roboterarm

(6 Freiheitsgrade)

LED-Leuchte

Lautsprecher

Alu-Gehäuse
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Hardware II

Greifer (2 Freiheitsgrade)

Laserscanner

(30m Reichweite)

Farbkamera

Mobile Plattform:

Pioneer 3-AT

Sonarsensoren

Differential-

antrieb

Laptop

LED-Leiste
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Gesture recognition
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Gesture recognition

Time-Of-Flight-
Kamera

Hand-Detektion

Tracking

Fourier Features

x

y

0 x

y

0

Pfad Tiefe

Frequenzen

Klassifikation

Nachbarschaftssuche

Gesichtsdetekt.

Zeigerichtung
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Grasp objects
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MMI
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MMI

industrial robot

humanoid robot

stuffed animal

corpse prosthetic hand

zombie

bunraku puppet
{uncanny valley

healthy

person

moving

still

human likeness 50% 100%

fa
m

il
ia

ri
ty

 
+
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Safety
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Definition

A discrete image I is a function I : N2 → V. Locations P belong to
the image support, i.e. a finite rectangular grid, i.e.
D = [0, . . .M]× [0, . . .N] ⊆ N

2. For gray-scale images
V = [0, . . . , 255] ⊆ N; for color images we (usually) have
V = [0, . . . , 255]3 ⊆ N

3. An image element X is called a pixel
which has a pixel location Λ(X ) = P and a pixel value
Υ(X ) = I (Λ(X )) = v ∈ V.

– Interpretation of visual and range data for robotics – 3d maps and color Slide 93



GPS Radiometric Calibration Lisa Segmentation - formally JSEG References Own Other References

Segmentation of an image I :
image is decomposed into a number NR of regions R i , with
i = 1..NR, which are disjoint non-empty sections of I .

Fig.: Theoretical example of segmentation.
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Regions are connected sets of pixel locations that exhibit some
similarity in the pixel values which can be defined in various ways.
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The segmentation of an image I into regions R i is called complete,
if the regions exhibit the properties of Fu and Mui (1981)
formalized in the following:

Definition

Region Label Image IR: result of segmentation.
IR : N2 → {1, . . . ,NR}.
This label image is also called a map.
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Distances and Measures I
Equidistant coordinates in RGB, YUV, XYZ do not define colors
perceptually similar MacAdam (1942).
Color-specific distances: the ∆E family

∆E =
√

(L∗1 − L∗2)
2 + (a∗1 − a∗2)

2 + (b∗1 − b∗2)
2 . (7)
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Distances and Measures II

Physiologically, the eye is more sensitive to hue differences than
chroma and lightness and ∆E does not take this aspect into
account.
Improvements by CIE: ∆E94 and finally ∆E2000

∆E94 =

√

(

∆L

KLSL

)2

+

(

∆C

KCSC

)2

+

(

∆H

KHSH

)2

, (8)
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Color Textures I
For a set Q of N pixel locations Q = {P1,P2, ...,PN} let m be the

mean position of all pixels: m = 1
N

N
∑

i=1
P i . If Q is classified into C

classes Qi according to the color values at those locations, then let
mi be the mean position of the Ni points of class Qi :
mi =

1
Ni

∑

P∈Qi

P i . Then let ST =
∑

q∈Q

||q −m||2, the total spatial

variance and

SW =

C
∑

i=1

Si =

C
∑

i=1

∑

q∈Qi

||q −mi ||
2 , (9)

the spatial variance relative to the Qi classes. The measure J is
defined as:

J =
SB
SW

=
ST − SW

SW
, (10)
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Color Textures II

The J-image is a gray-scale pseudo-image whose pixel values are
the J values calculated over local windows centered on each pixel
position. The higher the local J value is, the more likely that the
pixel is near region boundaries.

(a) 5× 5 (b) 9× 9 (c) 21× 21

Fig.: J-images for three sizes of the local window.
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