# Graph Mining and Graph Classification: Application to cadastral map analysis. 

Romain Raveaux

L3I lab (EA 2118) - Université de La Rochelle

November 25-11, 2010
PhD Defense

Supervisors: J-M. Ogier J-C. Burie


## Outline

(1) Color processing
(2) Map interpretation
(3) Graph comparison
(4) Evaluation of Vectorized Documents

## Ancient documents

(1) Massive production of
heterogeneous documents.
(3) Societal issues and
challenges

- Heritage preservation
- An open access to patrimonial knowledge
- Historical enrichment
- Digital library


## Ancient documents

(1) Massive production of heterogeneous documents.
(2) Societal issues and challenges

- Heritage preservation
- An open access to patrimonial knowledge
- Historical enrichment
© Digital library



## Ancient documents

(1) Massive production of heterogeneous documents.
(2) Societal issues and challenges

- Heritage preservation
- An open access to patrimonial knowledge
- Historical enrichment
(3) Digital library



## Digital library

Textual documents

- Manual insertion of meta-data
- Automatic indexing
- OCR for old characters (DEBORA project [Boucher00])
- Structure indexing (AGORA [Ramel06])
- Texture indexing [Journet 08]


## Digital library

Textual documents

- Manual insertion of meta-data
- Automatic indexing
- OCR for old characters (DEBORA project [Boucher00])
- Structure indexing (AGORA [Ramel06])
- Texture indexing [Journet 08]



## Digital library

## Graphic documents:

- Automatic indexing
- Symbol descriptor [T-O Nguyen 08]
- Relational indexing in line-drawing images
[Rusiñol 10]
- Drop cap indexing [Uttama 05] [Coustaty 09]
- Map indexing (ALPAGE project)



## ALPAGE project

© ALPAGE (diachronic analysis of the Paris urban area: a geomatic approach)
(2) Supported by the ANR (National Research Agency)
© An association of 4 laboratories.
ANgP LAMOP of Paris-1, carrying the project, which includes historians, specialists in urban history and digital tools. - LIENSS of La Rochelle: geographers specialized in geomatics.

ArScAn in Nanterre bringing together archaeologists and geomaticians skilled in GIS and archeology of the parisian area. [易道 L3i of La Rochelle, comprised of IT scientists specialized in pattern recognition and vectorization.
(1) Objective: To build a geographic information system (GIS) about the pre-industrial Parisian area.


## ALPAGE project

(1) ALPAGE (diachronic analysis of the Paris urban area: a geomatic approach)
(2) Supported by the ANR (National Research Agency)
(3) An association of 4 laboratories.

【يgP LAMOP of Paris-1, carrying the project, which includes historians, specialists in urban history and digital tools.

- LIENSS of La Rochelle: geographers specialized in geomatics ArScAn in Nanterre bringing together archaeologists and geomaticians skilled in GIS and archeology of the parisian area.
 pattern recognition and vectorization.
(1) Objective: To build a geographic information system (GIS) about the pre-industrial Parisian area.


## ALPAGE project

(1) ALPAGE (diachronic analysis of the Paris urban area: a geomatic approach)
(2) Supported by the ANR (National Research Agency) ANgP LAMOP of Paris-1, carrying the project, which includes historians, specialists in urban history and digital tools. - LIENSS of La Rochelle: geographers specialized in geomatics ArScAn in Nanterre bringing together archaeologists and geomaticians skilled in GIS and archeology of the parisian area [昆 L3i of La Rochelle, comprised of IT scientists specialized in pattern recognition and vectorization.
(1) Objective: To build a geographic information system (GIS) about the pre-industrial Parisian area.

## ALPAGE project

(1) ALPAGE (diachronic analysis of the Paris urban area: a geomatic approach)
(2) Supported by the ANR (National Research Agency)
(3) An association of 4 laboratories.

Lysp LAMOP of Paris-1, carrying the project, which includes historians, specialists in urban history and digital tools.
© LIENSS of La Rochelle: geographers specialized in geomatics.
ArScAn in Nanterre bringing together archaeologists and geomaticians skilled in GIS and archeology of the parisian area.
厨 L L3i of La Rochelle, comprised of IT scientists specialized in pattern recognition and vectorization.
(1) Objective: To build a geographic information system (GIS) about the pre-industrial Parisian area.


## ALPAGE: Raster to Polygon




## ALPAGE: Raster to Polygon

- Information retrieval
- Quarter
- Parcel
- Parcel Polygonization



## ALPAGE: Raster to Polygon

- Information retrieval
- Quarter
- Parcel
- Parcel Polygonization



## Overall methodology of our system



## Color restoration

Color space selection
Color segmentation

## Input images

－Time due degradation
－Under－saturated images
－More washed out，as in pastels
－Color restoration
－Non－uniform increasing of the saturation


## Input images

- Time due degradation
- Under-saturated images
- More washed out, as in pastels
- Color restoration
- Non-uniform increasing of the saturation



## Input images

- Time due degradation
- Under-saturated images
- More washed out, as in pastels
- Color restoration
- Non-uniform increasing of the saturation



## Color enhancement based on PCA

- Independent system axis: $Y=V(X-\mu) \quad X=\left|\begin{array}{l}R \\ G \\ B\end{array}\right|$
- $V$ are the eigenvectors of the covariance matrix.
- $\mu$ is the mean vector.
- Data extension in the direction of the main factorial axis.



## Color enhancement based on PCA

- Independent system axis: $Y=V(X-\mu) \quad X=\left|\begin{array}{l}R \\ G \\ B\end{array}\right|$
- $V$ are the eigenvectors of the covariance matrix.
- $\mu$ is the mean vector.
- Data extension in the direction of the main factorial axis.

$$
\begin{gathered}
Y^{\prime}=K Y \\
K=\left|\begin{array}{ccc}
k 1 & 0 & 0 \\
0 & k 2 & 0 \\
0 & 0 & k 3
\end{array}\right|
\end{gathered}
$$

## Conventional representation

- Difference color spaces:
- Primary based system:RGB
- Perceptual color space: L* a* b*
- Luminance - Chrominance representation: AC1C2
- Independ axis system: /1/2/3
- A set of color components:

with $\operatorname{Card}(C)=25$
The choice of a color snace turns into a feature selection problem


## Conventional representation

- Difference color spaces:
- Primary based system: $R G B$
- Perceptual color space: $L^{*} a^{*} b^{*}$
- Luminance - Chrominance representation: AC1C2
- Independ axis system: /1/2/3
- A set of color components:

with $\operatorname{Card}(C)=25$
The choice of a color snace turns into a feature selection problem


## Conventional representation

- Difference color spaces:
- Primary based system:RGB
- Perceptual color space: $L^{*} a^{*} b^{*}$
- Luminance - Chrominance representation: AC1C2
- Independ axis system: /1/2/3
- A set of color components:

with $\operatorname{Card}(C)=25$
The choice of a color snace turns into a feature selection problem


## Conventional representation

- Difference color spaces:
- Primary based system:RGB
- Perceptual color space: $L^{*} a^{*} b^{*}$
- Luminance - Chrominance representation: AC1C2
- Independ axis system: /1/2/3
- A set of color components:

with $\operatorname{Card}(C)=25$
The choice of a color snace turns into a feature selection problem


## Conventional representation

- Difference color spaces:
- Primary based system: $R G B$
- Perceptual color space: $L^{*} a^{*} b^{*}$
- Luminance - Chrominance representation: AC1C2
- Independ axis system: /1/2/3
- A set of color components:

$$
C=\left\{C_{i}\right\}_{i=1}^{N}=\left\{R, G, B, I 1, I 2, I 3, L^{*}, a^{*}, b^{*}, \ldots\right\}
$$

with $\operatorname{Card}(C)=25$
The choice of a color space turns into a feature selection problem

## Conventional representation

- Difference color spaces:
- Primary based system: $R G B$
- Perceptual color space: $L^{*} a^{*} b^{*}$
- Luminance - Chrominance representation: AC1C2
- Independ axis system: /1/2/3
- A set of color components:

$$
C=\left\{C_{i}\right\}_{i=1}^{N}=\left\{R, G, B, I 1, I 2, I 3, L^{*}, a^{*}, b^{*}, \ldots\right\}
$$

with $\operatorname{Card}(C)=25$
The choice of a color space turns into a feature selection problem

## Color restoration

Color space selection
Color segmentation

## Feature selection

- Find $K \subset C$ with $\operatorname{Card}(K)=3$
- Criteria: Maximization of a classification rate
- Classification: 1-NN


| Name | Type | Searching algorithm |
| :---: | :---: | :---: |
| CFS | Filter | Greedy stepwise |
| DHCS | Filter | Ranker |
| GACS | Wrapper | Genetic Algorithm |
| OneRS | Wrapper | Ranker |

Color space selection
Color segmentation

## Feature selection

- Find $K \subset C$ with Card $(K)=3$
- Criteria: Maximization of a classification rate
- Classification: 1-NN


| Name | Type | Searching algorithm |
| :---: | :---: | :---: |
| CFS | Filter | Greedy stepwise |
| DHCS | Filter | Ranker |
| GACS | Wrapper | Genetic Algorithm |
| OneRS | Wrapper | Ranker |

## Feature selection

- Find $K \subset C$ with Card $(K)=3$
- Criteria: Maximization of a classification rate
- Classification: 1-NN
- Search algorithm


| Name | Type | Searching algorithm |
| :---: | :---: | :---: |
| CFS | Filter | Greedy stepwise |
| DHCS | Filter | Ranker |
| GACS | Wrapper | Genetic Algorithm |
| OneRS | Wrapper | Ranker |

## Feature selection

- Find $K \subset C$ with
$\operatorname{Card}(K)=3$
- Criteria: Maximization of a classification rate
- Classification: 1-NN
- Search algorithm:


| Name | Type | Searching algorithm |
| :---: | :---: | :---: |
| CFS | Filter | Greedy stepwise |
| DHCS | Filter | Ranker |
| GACS | Wrapper | Genetic Algorithm |
| OneRS | Wrapper | Ranker |

## Vectorial gradient

- Edge detection:
- Di Zenzo's method
- Vectorial gradient in $K$

$$
\left\{\begin{array}{l}
a=\left(G_{\times}^{K 1}\right)^{2}+\left(G_{x}^{K 2}\right)^{2}+\left(G_{x}^{K 3}\right)^{2} \\
b=G_{x}^{K K} G_{y}^{K 1}+G_{x}^{K 2} G_{y}^{K 2}+G_{x}^{K 3} G_{y}^{K 3} \\
c=\left(G_{y}^{K 1}\right)^{2}+\left(G_{y}^{K 2}\right)^{2}+\left(G_{y}^{K 3}\right)^{2}
\end{array}\right.
$$

- Segmentation results
- on Berkeley benchmark
- Slight improvement



## Vectorial gradient

- Edge detection:
- Di Zenzo's method
- Vectorial gradient in K

$$
\left\{\begin{array}{l}
a=\left(G_{夭}^{K 1}\right)^{2}+\left(G_{x}^{K 2}\right)^{2}+\left(G_{x}^{K 3}\right)^{2} \\
b=G_{x}^{K K} G_{y}^{K 1}+G_{x}^{K} G_{y}^{K 2}+G_{x}^{K 3} G_{y}^{K 3} \\
c=\left(G_{y}^{K 1}\right)^{2}+\left(G_{y}^{K 2}\right)^{2}+\left(G_{y}^{K 3}\right)^{2}
\end{array}\right.
$$

- Segmentation results
- on Berkeley benchmark
- Slight improvement




## Main steps



## Modeling

## - Logical structure

- To identify the map elements


The essential of
Cadastral Map


Contour image


Color processing

## Original image



## Text layer



## Graphic layer



## Street layer



## Graphic minus Street



Modeling
Image processing

## Quarters



## White connected components



## Black layer remover: Median axis



## Image chaining



Color processing

## Polygonal approximation



## Raster to polygon system



- Polygon production
- We need to evaluate it


## Main steps



## Main steps



## Graphs are everywhere...

## Graphs in Reality

- Graphs model objects and their relationships.
- Also referred to as networks.
- All common data structures can be modeled as graphs.
How similar are two graphs?



## Graphs are everywhere...

## Graphs in Reality

- Graphs model objects and their relationships.
- Also referred to as networks.
- All common data structures can be modeled as graphs.

How similar are two graphs?


## Graphs are everywhere...

## Graphs in Reality

- Graphs model objects and their relationships.
- Also referred to as networks.
- All common data structures can be modeled as graphs.
How similar are two graphs?



## Graphs are everywhere...

Graphs in Reality

- Graphs model objects and their relationships.
- Also referred to as networks.
- All common data structures can be modeled as graphs.
How similar are two graphs?
- Graph similarity is the central problem for all learning tasks such as clustering and classification on graphs.



## From the beginning...

Definition and notation of a graph:

## Definition

Let $L_{V}$ and $L_{E}$ denote the set of node and edge labels, respectively. A labeled graph G is a 4-tuple $G=(V, E, \mu, \xi)$, where

- $V$ is the set of nodes,
- $E \subseteq V \times V$ is the set of edges
- $\mu: V \rightarrow L_{V}$ is a function assigning labels to the nodes, and
- $\xi: E \rightarrow L_{E}$ is a function assigning labels to the edges.
- Let $G_{1}=\left(V_{1}, E_{1}, \mu_{1}, \xi_{1}\right)$ be the source graph
- And $G_{2}=\left(V_{2}, E_{2}, \mu_{2}, \xi_{2}\right)$ the target graph
- With $V_{1}=\left(u_{1}, \ldots, u_{n}\right)$ and $V_{2}=\left(v_{1}, \ldots, v_{m}\right)$ respectively


## Graph isomorphism

## Graph isomorphism

## Subgraph isomorphism

## Graph isomorphism

## Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$
- No polynomial-time algorithm is known for graph isomorphism
- Neither it is known to be NP-complete


## Subgraph isomorphism

## Graph isomorphism

## Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$
- No polynomial-time algorithm is known for graph isomorphism - Neither it is known to be NP-complete


## Subgraph isomorphism

## Graph isomorphism

## Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$.
- No polynomial-time algorithm is known for graph isomorphism - Neither it is known to be NP-complete


## Subgraph isomorphism

## Graph isomorphism

Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$.
- No polynomial-time algorithm is known for graph isomorphism
- Neither it is known to be NP-complete


## Subgraph isomorphism

## Graph isomorphism

Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$.
- No polynomial-time algorithm is known for graph isomorphism
- Neither it is known to be NP-complete


## Subgraph isomorphism

## Graph isomorphism

Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$.
- No polynomial-time algorithm is known for graph isomorphism
- Neither it is known to be NP-complete


## Subgraph isomorphism

## Graph isomorphism

Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$.
- No polynomial-time algorithm is known for graph isomorphism
- Neither it is known to be NP-complete

Subgraph isomorphism

- Means finding a subgraph $G_{3}$ of $G_{2}$ such that $G_{1}$ and $G_{3}$ are isomorphic.
- Subgraph isomorphism is NP-complete



## Graph isomorphism

Graph isomorphism

- Find a mapping $f: V_{1} \rightarrow V_{2}$
- i.e. $x, y \in V_{1} \Rightarrow(x, y) \in E_{1}$
- $f$ is an isomorphism $\operatorname{iff}(f(x), f(y))$ is an edge of $G_{2}$.
- No polynomial-time algorithm is known for graph isomorphism
- Neither it is known to be NP-complete

Subgraph isomorphism

- Means finding a subgraph $G_{3}$ of $G_{2}$ such that $G_{1}$ and $G_{3}$ are isomorphic.
- Subgraph isomorphism is NP-complete



## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other


## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other


## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

```
State of the art
Our proposal: Sub-graph matching
```

Summary

## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

Problems for real world applications

## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

Problems for real world applications

- Error-tolerant
- To measure the similarity of two graphs.
- Runtime may grow exponentially with number of nodes
- This is an enormous problem for large datasets of graphs
$\square$ Polynomial-time similarity measure


## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

Problems for real world applications

- Error-tolerant
- To measure the similarity of two graphs.
- Runtime may grow exponentially with number of nodes
- This is an enormous problem for large datasets of graphs
$\qquad$ Polvnomial-time similarity measure


## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

Problems for real world applications

- Error-tolerant
- To measure the similarity of two graphs.
- Runtime may grow exponentially with number of nodes
- This is an enormous problem for large datasets of graphs



## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

Problems for real world applications

- Error-tolerant
- To measure the similarity of two graphs.
- Runtime may grow exponentially with number of nodes
- This is an enormous problem for large datasets of graphs


## Error-tolerant graph isomorphism

- Exact graph matching is useless in many computer vision applications
- Concerning graph matching under noise and distortion
- The matching incorporates an error model to identify the distortions which make one graph a distorted version of the other

Problems for real world applications

- Error-tolerant
- To measure the similarity of two graphs.
- Runtime may grow exponentially with number of nodes
- This is an enormous problem for large datasets of graphs

Wanted: Polynomial-time similarity measure for graphs

## Problem statement

A dissimilarity measure is a function : $d: X \times X \rightarrow \mathbb{R}$ where $X$ is the representation space for the object description.
(1) non-negativity: $d(x, y) \geq 0$
(3) uniqueness: $d(x, y)=0 \Rightarrow x=y$
(3) symmetry: $d(x, y)=d(y, x)$

Criteria for a good graph measure of similarity

- Expressive
- Efficient to compute
- Applicable to wide range of graphs


## Problem statement

A dissimilarity measure is a function : $d: X \times X \rightarrow \mathbb{R}$ where $X$ is the representation space for the object description.
(1) non-negativity: $d(x, y) \geq 0$
(2) uniqueness: $d(x, y)=0 \Rightarrow x=y$
( © symmetry: $d(x, y)=d(y, x)$
Criteria for a good graph measure of similarity

- Expressive
- Efficient to compute
- Applicable to wide range of graphs


## Problem statement

A dissimilarity measure is a function : $d: X \times X \rightarrow \mathbb{R}$ where $X$ is the representation space for the object description.
(1) non-negativity: $d(x, y) \geq 0$
(2) uniqueness: $d(x, y)=0 \Rightarrow x=y$
(3) symmetry: $d(x, y)=d(y, x)$

Criteria for a good graph measure of similarity

- Expressive
- Efficient to compute
- Applicable to wide range of graphs


## Problem statement

A dissimilarity measure is a function : $d: X \times X \rightarrow \mathbb{R}$ where $X$ is the representation space for the object description.
(1) non-negativity: $d(x, y) \geq 0$
(2) uniqueness: $d(x, y)=0 \Rightarrow x=y$
(3) symmetry: $d(x, y)=d(y, x)$

Criteria for a good graph measure of similarity

- Expressive
- Efficient to compute
- Applicable to wide range of graphs


## Problem statement

A dissimilarity measure is a function : $d: X \times X \rightarrow \mathbb{R}$ where $X$ is the representation space for the object description.
(1) non-negativity: $d(x, y) \geq 0$
(2) uniqueness: $d(x, y)=0 \Rightarrow x=y$
(3) symmetry: $d(x, y)=d(y, x)$

Criteria for a good graph measure of similarity

- Expressive
- Efficient to compute
- Applicable to wide range of graphs


## Problem statement

A dissimilarity measure is a function : $d: X \times X \rightarrow \mathbb{R}$ where $X$ is the representation space for the object description.
(1) non-negativity: $d(x, y) \geq 0$
(2) uniqueness: $d(x, y)=0 \Rightarrow x=y$
(3) symmetry: $d(x, y)=d(y, x)$

Criteria for a good graph measure of similarity

- Expressive
- Efficient to compute
- Applicable to wide range of graphs


# Comparison between Classical Graph-Matching Methods 

|  | Graph <br> Isomorphism | Subgraph Isomorphism | Error-tolerant <br> Subgraph <br> Isomorphism | Optimal | Complexity Class | Key <br> References |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Backtrack tree search | Yes | Yes | No | Yes | NP |  |
| Forward checking | Yes | Yes | No | Yes | NP | [32] |
| Discrete relaxation | Yes | Yes | Yes ${ }^{1}$ | Yes | $\mathrm{NP}^{2}$ | [12] |
| Association graphs | Yes | Yes | No | Yes | NP | [14, 23] |
| Graph edition | Yes | Yes | Yes | Yes | NP | [7, 21, 36] |
| Random graphs | Yes | Yes | Yes | Yes | NP | [25, 38] |
| Probabilistic relaxation | Yes | Yes | Yes | No | P | [5, 8, 11, 37] |
| Neural networks | Yes | Yes | Yes | No | P | [16, 29, 28] |
| Genetic algorithms | Yes | Yes | Yes | No | P | [6, 9, 15] |
| Eigendecomposition | Yes | No | $\mathrm{No}^{3}$ | Yes | P | [33] |
| Linear programming | Yes | No | No | Yes | P | [2] |
| Indexed search | Yes | Yes | No | Yes | $\mathrm{P}^{4}$ | [4, 27] |
| ${ }^{1}$ In some cases (e.g. [12]). |  |  |  |  |  |  |
| ${ }^{2}$ If backtracking follows relaxation. |  |  |  |  |  |  |
| ${ }^{3}$ Although is able to find error-tolerant graph isomorphism between close graphs. |  |  |  |  |  |  |

Table: In Terms of Their Computational Complexity and the Ability to Perform an Inexact Matching, [Lladós 2001].

## Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform $G_{1}$ into $G_{2}$

- Distortions $s_{i}$ : deletions, insertions, substitutions of nodes and edges.
- Edit path $S=s_{1}, \ldots, s_{n}$ : A sequence of edit operations that transforms $G_{1}$ into $G_{2}$
- Cost functions: Measuring the strength of a given distortion
- Edit distance d( $\left.G_{1}, G_{2}\right)$ : Minimum cost edit path between two graphs.
Problem of Edit Distance: NP complete


## Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform $G_{1}$ into $G_{2}$

- Distortions $s_{i}$ : deletions, insertions, substitutions of nodes and edges.
- Edit path $S=s_{1}, \ldots, s_{n}$ : A sequence of edit operations that transforms $G_{1}$ into $G_{2}$.
- Cost functions: Measuring the strength of a given distortion
- Edit distance $d\left(G_{1}, G_{2}\right)$ : Minimum cost edit path between two graphs.
Problem of Edit Distance: NP complete


## Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform $G_{1}$ into $G_{2}$

- Distortions $s_{i}$ : deletions, insertions, substitutions of nodes and edges.
- Edit path $S=s_{1}, \ldots, s_{n}$ : A sequence of edit operations that transforms $G_{1}$ into $G_{2}$.
- Cost functions: Measuring the strength of a given distortion.
- Edit distance $d\left(G_{1}, G_{2}\right)$ : Minimum cost edit path between two graphs.
Problem of Edit Distance: NP complete


## Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform $G_{1}$ into $G_{2}$

- Distortions $s_{i}$ : deletions, insertions, substitutions of nodes and edges.
- Edit path $S=s_{1}, \ldots, s_{n}$ : A sequence of edit operations that transforms $G_{1}$ into $G_{2}$.
- Cost functions: Measuring the strength of a given distortion.
- Edit distance $d\left(G_{1}, G_{2}\right)$ : Minimum cost edit path between two graphs.
Problem of Edit Distance: NP complete


## Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform $G_{1}$ into $G_{2}$

- Distortions $s_{i}$ : deletions, insertions, substitutions of nodes and edges.
- Edit path $S=s_{1}, \ldots, s_{n}$ : A sequence of edit operations that transforms $G_{1}$ into $G_{2}$.
- Cost functions: Measuring the strength of a given distortion.
- Edit distance $d\left(G_{1}, G_{2}\right)$ : Minimum cost edit path between two graphs.
Problem of Edit Distance: NP complete
- Explore the space of all possible mappings of the nodes and edges of $G_{1}$ to the nodes and edges of $G_{2}$.
- Edit Distance computation also has a worst case exponential complexity which prevents its use in large datasets. .


## Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform $G_{1}$ into $G_{2}$

- Distortions $s_{i}$ : deletions, insertions, substitutions of nodes and edges.
- Edit path $S=s_{1}, \ldots, s_{n}$ : A sequence of edit operations that transforms $G_{1}$ into $G_{2}$.
- Cost functions: Measuring the strength of a given distortion.
- Edit distance $d\left(G_{1}, G_{2}\right)$ : Minimum cost edit path between two graphs.
Problem of Edit Distance: NP complete
- Explore the space of all possible mappings of the nodes and edges of $G_{1}$ to the nodes and edges of $G_{2}$.
- Edit Distance computation also has a worst case exponential complexity which prevents its use in large datasets.


## Approximation to Graph Edit Distance (ED)

Different types of approximations were proposed in [Hidovic 2004].

- Vector space embedding of graphs [Lopresti 2003], [Bunke 2010].
- Spectral graph theory [Robles-Kelly 2005].
- Probabilistic methods [Myers 2000].
- Combinatorial optimization [Gold 1996].
[Shokoufandeh 2006], [Riesen 2009],[Jouili 2009].


## Approximation to Graph Edit Distance (ED)

Different types of approximations were proposed in [Hidovic 2004].

- Vector space embedding of graphs [Lopresti 2003], [Bunke 2010].
- Spectral graph theory [Robles-Kelly 2005].
- Probabilistic methods [Myers 2000]
- Combinatorial optimization [Gold 1996],
[Shokoufandeh 2006], [Riesen 2009],[Jouili 2009]


## Approximation to Graph Edit Distance (ED)

Different types of approximations were proposed in [Hidovic 2004].

- Vector space embedding of graphs [Lopresti 2003], [Bunke 2010].
- Spectral graph theory [Robles-Kelly 2005].
- Probabilistic methods [Myers 2000].
- Combinatorial optimization [Gold 1996],
[Shokoufandeh 2006], [Riesen 2009],[Jouili 2009]


## Approximation to Graph Edit Distance (ED)

Different types of approximations were proposed in [Hidovic 2004].

- Vector space embedding of graphs [Lopresti 2003], [Bunke 2010].
- Spectral graph theory [Robles-Kelly 2005].
- Probabilistic methods [Myers 2000].
- Combinatorial optimization [Gold 1996], [Shokoufandeh 2006], [Riesen 2009],[Jouili 2009].


## Graph comparison through combinatorial optimization

Basic idea:

- Methods are based on an optimization procedure mapping local substructures
- Any node $\left(u_{n}\right)$ from $G_{1}$ can be assigned to any node $\left(v_{m}\right)$ of $G_{2}$,
- Incurring some cost that depends on the $u_{n}-v_{m}$ assignment.
- It is required to map all nodes in such a way that the total cost of the assignment is minimized.
Cost matrix representation (C):



## Graph comparison through combinatorial optimization

Basic idea:

- Methods are based on an optimization procedure mapping local substructures
- Any node $\left(u_{n}\right)$ from $G_{1}$ can be assigned to any node $\left(v_{m}\right)$ of $G_{2}$,
- Incurring some cost that depends on the $u_{n}-v_{m}$ assignment.
- It is required to map all nodes in such a way that the total cost of the assignment is minimized.
Cost matrix representation (C):



## Graph comparison through combinatorial optimization

Basic idea:

- Methods are based on an optimization procedure mapping local substructures
- Any node $\left(u_{n}\right)$ from $G_{1}$ can be assigned to any node $\left(v_{m}\right)$ of $G_{2}$,
- Incurring some cost that depends on the $u_{n}-v_{m}$ assignment.

It is required to map all nodes in such a way that the total cost of the assignment is minimized.
Cost matrix representation (C)

## Graph comparison through combinatorial optimization

Basic idea:

- Methods are based on an optimization procedure mapping local substructures
- Any node $\left(u_{n}\right)$ from $G_{1}$ can be assigned to any node $\left(v_{m}\right)$ of $G_{2}$,
- Incurring some cost that depends on the $u_{n}-v_{m}$ assignment.
- It is required to map all nodes in such a way that the total cost of the assignment is minimized.
Cost matrix representation (C):


## Graph comparison through combinatorial optimization

Basic idea:

- Methods are based on an optimization procedure mapping local substructures
- Any node $\left(u_{n}\right)$ from $G_{1}$ can be assigned to any node $\left(v_{m}\right)$ of $G_{2}$,
- Incurring some cost that depends on the $u_{n}-v_{m}$ assignment.
- It is required to map all nodes in such a way that the total cost of the assignment is minimized.
Cost matrix representation ( $C$ ):
- $C_{i j}$ correspond to the costs of assigning the $i^{\text {th }}$ node of $G_{1}$ to the $j^{t h}$ node of $G_{2}$.

$$
C=\left|\begin{array}{cccc}
c_{1,1} & \ldots & \ldots & c_{1, m} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
c_{n, 1} & \ldots & \ldots & c_{n, m}
\end{array}\right|
$$

## Combinatorial optimization: Comparative study

|  | Node signature | Distance |
| :---: | :---: | :---: |
| [Gold 1996] | Node degree+Label | $*$ |
| [Shokoufandeh 2006] | Eigen vector | L2 |
| [Riesen 2009] | (1)Node+(2)Edge | Edit cost |

*: Depends on the graph attribute type.

## Our proposal

- A generalization of prior works
- Where local substructures are represented as graphs
- Where the cost function $c(i, j)$ is a graph distance


## Our proposal

- A generalization of prior works
- Where local substructures are represented as graphs
- Where the cost function $c(i, j)$ is a graph distance


## Our proposal

- A generalization of prior works
- Where local substructures are represented as graphs
- Where the cost function $c(i, j)$ is a graph distance


## Our proposal

- A generalization of prior works
- Where local substructures are represented as graphs
- Where the cost function $c(i, j)$ is a graph distance

A graph matching method based on subgraph assignments

## Overview

- A distance between graph
- Subgraph decomposition - Optimization algorithm


Figure: Subgraph matching: A bipartite graph ${ }_{5}$

## Overview

- A distance between graph
- Subgraph decomposition
- Optimization algorithm


Figure: Subgraph matching: A bipartite graph ${ }_{5}$

## Overview

- A distance between graph
- Subgraph decomposition
- Optimization algorithm


Figure: Subgraph matching: A bipartite graph ${ }_{5}$

## Graph decomposition

A subgraph (sg):

- A structure gathering the edges and their corresponding ending vertices from a root vertex.


Figure: Decomposition into subgraph world

## Matrix representation I

- The cost matrix contains the distances between every pair of subgraphs from $G_{1}$ and $G_{2}$.
- What's the best (minimum-cost) way to assign the subgraphs?
- Assignment problem solved by the Hungarian method [Kuhn 1955]
- The cost of the minimum-weight subgraph matching - SubGraph Matching Distance $\operatorname{SGMD}\left(G_{1}, G_{2}\right)$

Example of possible variations of SGMD

- SGMD $E D$ : Based on edit distance.
- $S_{G M D}$ : Based on graph probing.

$$
C=\left|\begin{array}{cccc}
c_{1,1} & \ldots & \ldots & c_{1, m} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
c_{n, 1} & \ldots & \ldots & c_{n, m}
\end{array}\right|
$$

## Matrix representation I

- The cost matrix contains the distances between every pair of subgraphs from $G_{1}$ and $G_{2}$.
- What's the best (minimum-cost) way to assign the subgraphs?
- Assignment problem solved by the Hungarian method [Kuhn 1955]
- The cost of the minimum-weight subgraph matching - SubGraph Matching Distance $\operatorname{SGMD}\left(G_{1}, G_{2}\right)$

Example of possible variations of SGMD

- SGMD ${ }_{E D}$ : Based on edit distance.
- SGMD $G P$ : Based on graph probing.

$$
C=\left|\begin{array}{cccc}
c_{1,1} & \ldots & \ldots & c_{1, m} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
c_{n, 1} & \ldots & \ldots & c_{n, m}
\end{array}\right|
$$

## Matrix representation I

- The cost matrix contains the distances between every pair of subgraphs from $G_{1}$ and $G_{2}$.
- What's the best (minimum-cost) way to assign the subgraphs?
- Assignment problem solved by the Hungarian method [Kuhn 1955]
- The cost of the minimum-weight subgraph matching :
- SubGraph Matching Distance $\operatorname{SGMD}\left(G_{1}, G_{2}\right)$

Example of possible variations of SGMD

- $S G M D_{E D}$ : Based on edit distance.
- $S G M D_{G P}$ : Based on graph probing.

$$
C=\left|\begin{array}{cccc}
c_{1,1} & \ldots & \ldots & c_{1, m} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
c_{n, 1} & \ldots & \ldots & c_{n, m}
\end{array}\right|
$$

## Matrix representation I

- The cost matrix contains the distances between every pair of subgraphs from $G_{1}$ and $G_{2}$.
- What's the best (minimum-cost) way to assign the subgraphs?
- Assignment problem solved by the Hungarian method [Kuhn 1955]
- The cost of the minimum-weight subgraph matching :
- SubGraph Matching Distance $\operatorname{SGMD}\left(G_{1}, G_{2}\right)$

Example of possible variations of SGMD:

- $S G M D_{E D}$ : Based on edit distance.
- $S G M D_{G P}$ : Based on graph probing.

$$
C=\left|\begin{array}{cccc}
c_{1,1} & \ldots & \ldots & c_{1, m} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
c_{n, 1} & \ldots & \ldots & c_{n, m}
\end{array}\right|
$$

## Theoretical discussion

- Our proposal is a pseudo metric
- Positive
- Symmetric
- Triangle inequality
- $S G M D_{E D}$ is a lower bound for the edit distance


## Theoretical discussion

- Our proposal is a pseudo metric
- Positive
- Symmetric
- Triangle inequality
- $S G M D_{E D}$ is a lower bound for the edit distance


## Theoretical discussion

- Our proposal is a pseudo metric
- Positive
- Symmetric
- Triangle inequality
- $S G M D_{E D}$ is a lower bound for the edit distance


## Theoretical discussion

- Our proposal is a pseudo metric
- Positive
- Symmetric
- Triangle inequality
- $S G M D_{E D}$ is a lower bound for the edit distance


## Theoretical discussion

- Our proposal is a pseudo metric
- Positive
- Symmetric
- Triangle inequality
- $S G M D_{E D}$ is a lower bound for the edit distance



## Theoretical discussion

- Our proposal is a pseudo metric
- Positive
- Symmetric
- Triangle inequality
- $S G M D_{E D}$ is a lower bound for the edit distance
- $\forall G_{1}, G_{2}: \frac{S G M D_{E D}\left(G_{1}, G_{2}\right)}{\max \left(\left|G_{1}\right|,\left|G_{2}\right|\right)} \leq E D\left(G_{1}, G_{2}\right)$


## Experiments

Hypothesis:

- The more accurate the distance induced by graph matching is, the better the matching is.
The question turns into a graph distance comparison:
- Correlation
- Classification


## Experiments

Hypothesis:

- The more accurate the distance induced by graph matching is, the better the matching is.

The question turns into a graph distance comparison:

- Correlation
- Classification


## Experiments

Hypothesis:

- The more accurate the distance induced by graph matching is, the better the matching is.

The question turns into a graph distance comparison:

- Correlation
- Classification


## Databases

- IAM Graph Database Repository (Standardized graph data sets for benchmarking).
- Synthetic data set (Randomly generated for scalability testing).
- Home-made data sets (Domain-dependent applications)

Table: Characteristics of the four data sets used in our computational experiments

|  | Base A | Base B | Base C | Base D |
| :---: | :---: | :---: | :---: | :---: |
| Number of classes (N) | 50 | 10 | 32 | 15 |
| $\mid$ Training | 14128 | 114 | 9600 | 5062 |
| Validation | 14101 | 56 | 3200 | 1688 |
| Average number of nodes | 12.03 | 5.56 | 8.84 | 4.7 |
| Average number of edges | 9.86 | 11.71 | 10.15 | 3.6 |
| Average degree of nodes | 1.63 | 4.21 | 1.15 | 1.3 |

## Databases

- IAM Graph Database Repository (Standardized graph data sets for benchmarking).
- Synthetic data set (Randomly generated for scalability testing).
- Home-made data sets (Domain-dependent applications).

Table: Characteristics of the four data sets used in our computational experiments

|  | Base A | Base B | Base C | Base D |
| :---: | :---: | :---: | :---: | :---: |
| Number of classes (N) | 50 | 10 | 32 | 15 |
| $\mid$ Training | 14128 | 114 | 9600 | 5062 |
| $\mid$ Validation | 14101 | 56 | 3200 | 1688 |
| Average number of nodes | 12.03 | 5.56 | 8.84 | 4.7 |
| Average number of edges | 9.86 | 11.71 | 10.15 | 3.6 |
| Average degree of nodes | 1.63 | 4.21 | 1.15 | 1.3 |

## Databases

- IAM Graph Database Repository (Standardized graph data sets for benchmarking).
- Synthetic data set (Randomly generated for scalability testing).
- Home-made data sets (Domain-dependent applications).

Table: Characteristics of the four data sets used in our computational experiments

|  | Base A | Base B | Base C | Base D |
| :---: | :---: | :---: | :---: | :---: |
| Number of classes (N) | 50 | 10 | 32 | 15 |
| $\mid$ Training | 14128 | 114 | 9600 | 5062 |
| $\mid$ Validation | 14101 | 56 | 3200 | 1688 |
| Average number of nodes | 12.03 | 5.56 | 8.84 | 4.7 |
| Average number of edges | 9.86 | 11.71 | 10.15 | 3.6 |
| Average degree of nodes | 1.63 | 4.21 | 1.15 | 1.3 |

## Protocol

- Correlation between ED and suboptimal distances:
- Rank correlation: Kendall correlation
- Distance correlation: Pearson correlation
- Classification stage


## Protocol

- Correlation between ED and suboptimal distances:
- Rank correlation: Kendall correlation
- Distance correlation: Pearson correlation
- Classification stage


## Protocol

- Correlation between ED and suboptimal distances:
- Rank correlation: Kendall correlation
- Distance correlation: Pearson correlation
- Classification stage


## Protocol

- Correlation between ED and suboptimal distances:
- Rank correlation: Kendall correlation
- Distance correlation: Pearson correlation
- Classification stage


## Protocol

- Correlation between ED and suboptimal distances:
- Rank correlation: Kendall correlation
- Distance correlation: Pearson correlation
- Classification stage
- 1-NN classifier


## Rank relationship with edit distance I



## Rank relationship with edit distance I



## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence( $H 0$ ) between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- H0 can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence( HO ) between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- H0 can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence( H 0 ) between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- HO can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence $(H 0)$ between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- H0 can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence $(H 0)$ between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- H0 can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence $(H 0)$ between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- H0 can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Rank relationship with edit distance II

$S G M D_{E D}$ vs ED

- $M=1200$ queries.
- Top $k$ responses to each query $(k=30)$
- A null hypothesis of independence $(H 0)$ between the two responses
- Ranks are observed as ordered categorical variables
- Kendall correlation coefficient $(\tau)$ is computed for each query pair (SGMD ${ }_{E D}$ vs ED)
- From the 1200 tests, only 124 have a p-value greater than 0.05
- 124 queries did not pass the Kendall's test
- H0 can be rejected in $89.67 \%$ cases, with a risk of $5 \%$.


## Classification stage

The standard nearest-neighbor ( $1-N N$ ) classification rule assigns $x$ to the class of the most similar graph in a set of labeled training data.

Table: Classification rate according to the graph distance in use

| Method | Base A | Base B | Base C | Base D |
| :---: | :---: | :---: | :---: | :---: |
| $E D(\%)$ | - | 92.86 | - | $\mathbf{8 2 . 1 0}$ |
| $S G M D_{E D}(\%)$ | $\mathbf{8 8 . 5 4}$ | $\mathbf{9 4 . 6 4}$ | $\mathbf{9 9 . 5 4}$ | 80.86 |
| $S G M D_{G P}(\%)$ | 88.48 | 94.64 | 99.21 | 78.79 |
| $G P(\%)$ | 57.01 | 92.86 | 98.33 | 59.89 |
| $N M D(\%)$ | 29.49 | 89.28 | 88.75 | 36.96 |

## Time complexity



Methods

Figure: Time complexity

## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Bottom lines

- Graph matching algorithm
- Graph distance
- Polynomial time complexity $\left(O\left(n^{3}\right)\right)$
- Lower bound relation with the edit distance
- Rank relation with edit distance
- 1-NN classifier is not negatively affected by using sub-optimal distances.
- Flexible distance with two meta-parameters:
- Sub distance
- Subgraph size


## Transition

- We have presented some general applications of graph comparison
- Next slides are dedicated to the use of graph distances in a context of performance evaluation

State of the art
Our proposal: Sub-graph matching
Summary

## Main steps



## Evaluation of Vectorized Documents

## Overview:

The goal:

## Evaluation of Vectorized Documents

Overview:

- Performance Evaluation(PE) has become of first interest during the last years.
- A contest on this topic: Since GREC'95 and every two years

The goal:

## Evaluation of Vectorized Documents

Overview:

- Performance Evaluation(PE) has become of first interest during the last years.
- A contest on this topic: Since GREC'95 and every two years

The goal:

## Evaluation of Vectorized Documents

Overview:

- Performance Evaluation(PE) has become of first interest during the last years.
- A contest on this topic: Since GREC'95 and every two years The goal:


## Evaluation of Vectorized Documents

Overview:

- Performance Evaluation(PE) has become of first interest during the last years.
- A contest on this topic: Since GREC'95 and every two years

The goal:

- A need for standard protocols to compare and evaluate methods.
- To establish a solid knowledge of the state of the art


## Evaluation of Vectorized Documents

Overview:

- Performance Evaluation(PE) has become of first interest during the last years.
- A contest on this topic: Since GREC'95 and every two years

The goal:

- A need for standard protocols to compare and evaluate methods.
- To establish a solid knowledge of the state of the art


## Evaluation of Vectorized Documents

Overview:

- Performance Evaluation(PE) has become of first interest during the last years.
- A contest on this topic: Since GREC'95 and every two years

The goal:

- A need for standard protocols to compare and evaluate methods.
- To establish a solid knowledge of the state of the art
- To determine the weaknesses and strengths


## Around performance evaluation for R2V system I

## Performance evaluation of vectorization and line detection has been reported by [Kong 1996]. [Hori 1996]. [Wenvin 1997] and [Chhabra 1998]

## Around performance evaluation for R2V system I

Performance evaluation of vectorization and line detection has been reported by [Kong 1996], [Hori 1996], [Wenyin 1997] and [Chhabra 1998].

- A method for evaluating the recognition of dashed lines
- Hori and Doermann [Hori 1996], a measurement methodology
for task-specific raster to vector conversion
- Wenyin and Dori [Wenyin 1997], a protocol for evaluating the
recognition of straight and circular lines
- Phillips and Chhabra [Chhabra 1998], a methodology for
evaluating graphics recognition systems operating on images
that contain straight lines and text blocks


## Around performance evaluation for R2V system I

Performance evaluation of vectorization and line detection has been reported by [Kong 1996], [Hori 1996], [Wenyin 1997] and [Chhabra 1998].

- A method for evaluating the recognition of dashed lines
- Hori and Doermann [Hori 1996], a measurement methodology for task-specific raster to vector conversion
- Wenyin and Dori [Wenyin 1997], a protocol for evaluating the recognition of straight and circular lines
- Phillips and Chhabra [Chhabra 1998], a methodology for evaluating graphics recognition systems operating on images that contain straight lines and text blocks


## Around performance evaluation for R2V system I

Performance evaluation of vectorization and line detection has been reported by [Kong 1996], [Hori 1996], [Wenyin 1997] and [Chhabra 1998].

- A method for evaluating the recognition of dashed lines
- Hori and Doermann [Hori 1996], a measurement methodology for task-specific raster to vector conversion
- Wenyin and Dori [Wenyin 1997], a protocol for evaluating the recognition of straight and circular lines
- Phillips and Chhabra [Chhabra 1998], a methodology for evaluating graphics recognition systems operating on images that contain straight lines and text blocks


## Around performance evaluation for R2V system I

Performance evaluation of vectorization and line detection has been reported by [Kong 1996], [Hori 1996], [Wenyin 1997] and [Chhabra 1998].

- A method for evaluating the recognition of dashed lines
- Hori and Doermann [Hori 1996], a measurement methodology for task-specific raster to vector conversion
- Wenyin and Dori [Wenyin 1997], a protocol for evaluating the recognition of straight and circular lines
- Phillips and Chhabra [Chhabra 1998], a methodology for evaluating graphics recognition systems operating on images that contain straight lines and text blocks


## Around performance evaluation for R2V system II

## Around performance evaluation for R2V system II

- All these methods are limited in their applicability to the ALPAGE project.
- All prior works focused on a lower level of consistency (arcs and segments) where we need an evaluation at polygon level.
- Modification of previous methods to a polygon entity is not trivial
- We propose an extension to polygon level of related approaches
- Evaluation of Vectorized Documents by means of Polygon Assignments and a Graph-Based Dissimilarity


## Around performance evaluation for R2V system II

- All these methods are limited in their applicability to the ALPAGE project.
- All prior works focused on a lower level of consistency (arcs and segments) where we need an evaluation at polygon level.
- Modification of previous methods to a polygon entity is not trivial
- We propose an extension to polygon level of related approaches
- Evaluation of Vectorized Documents by means of Polygon Assignments and a Graph-Based Dissimilarity


## Around performance evaluation for R2V system II

- All these methods are limited in their applicability to the ALPAGE project.
- All prior works focused on a lower level of consistency (arcs and segments) where we need an evaluation at polygon level.
- Modification of previous methods to a polygon entity is not trivial
- We propose an extension to polygon level of related approaches
- Evaluation of Vectorized Documents by means of Polygon Assignments and a Graph-Based Dissimilarity


## Around performance evaluation for R2V system II

- All these methods are limited in their applicability to the ALPAGE project.
- All prior works focused on a lower level of consistency (arcs and segments) where we need an evaluation at polygon level.
- Modification of previous methods to a polygon entity is not trivial
- A higher level requires a matching task when segments do not
- We propose an extension to polygon level of related approaches
- Evaluation of Vectorized Documents by means of Polygon Assignments and a Graph-Based Dissimilarity


## Around performance evaluation for R2V system II

- All these methods are limited in their applicability to the ALPAGE project.
- All prior works focused on a lower level of consistency (arcs and segments) where we need an evaluation at polygon level.
- Modification of previous methods to a polygon entity is not trivial
- A higher level requires a matching task when segments do not
- We propose an extension to polygon level of related approaches
- Evaluation of Vectorized Documents by means of Polygon Assignments and a Graph-Based Dissimilarity


## Around performance evaluation for R2V system II

- All these methods are limited in their applicability to the ALPAGE project.
- All prior works focused on a lower level of consistency (arcs and segments) where we need an evaluation at polygon level.
- Modification of previous methods to a polygon entity is not trivial
- A higher level requires a matching task when segments do not
- We propose an extension to polygon level of related approaches
- Evaluation of Vectorized Documents by means of Polygon Assignments and a Graph-Based Dissimilarity


## Problem definition

Two issues about the evaluation of the:
(1) Polygon detection
(2) Polygon approximation

## Problem definition: Polygon detection

- Given two sets of polygons, $D_{1}$ and $D_{2}$.
- Associated together with a weight function $C: D_{1} \times D_{2} \rightarrow \mathbb{R}$
- Find a mapping $f: D_{1} \rightarrow D_{2}$ such that the cost function Eq. 1 is minimized

$$
\begin{equation*}
\sum_{p \in D_{1}} C(p, f(p)) \tag{1}
\end{equation*}
$$

where $p$ is a polygon


Figure: Polygon partitions. (up) $D_{1}$; (down) $D_{2}$

## Problem definition: Polygon approximation

- Given two polygons $P_{1}, P_{2}$ with $N$ and $M$ points, respectively.
- The approximation error between $P_{1}$ and $P_{2}, d\left(P_{1}, P_{2}\right)$.

(a) $P_{1}$
(b) $P_{2}$

Figure: Polygons to be compared.

## Toward a proposition for evaluating polygon detection algorithms

Our proposal for assessing the quality of polygon detection system:
Two viewpoints:
(1) Polygon location
(2) Polygon approximation

A Local Evaluation of Vectorized Documents by means of Polygon Assignments and Matching

## Toward a proposition for evaluating polygon detection algorithms

Our proposal for assessing the quality of polygon detection system:
Two viewpoints:
(1) Polygon location
(2) Polygon approximation

A Local Evaluation of Vectorized Documents by means of Polygon Assignments and Matching

## Overview

(1) A bipartite graph weighed by the symmetric difference

- To evaluate how well polygons are detected and located
(3) A cycle graph edit distance applied to polygons
- The correctness of the polygonal
approximation
(Vectorization
precision).



## Overview

(1) A bipartite graph weighed by the symmetric difference

- To evaluate how well polygons are detected and located
(2) A cycle graph edit distance applied to polygons
- The correctness of the polygonal approximation (Vectorization precision).



## Step 1

(1) $K: P \times P \rightarrow \mathbb{R}$
(2) Optimization algorithm

- What's the best (minimum-cost) way to assign the polygons?
© Assignment problem solved by the Hungarian method [Kuhn 1955]
(c) The cost of the
minimum-weight polygon
mapping
- Polygon Mapping Distance $\operatorname{PMD}\left(D_{1}, D_{2}\right)$



## Step 1

(1) $K: P \times P \rightarrow \mathbb{R}$
(2) Optimization algorithm

- What's the best (minimum-cost) way to assign the polygons?
© Assignment problem solved by the Hungarian method [Kuhn 1955]
© The cost of the
minimum-weight polygon
mapping
- Polygon Mapping Distance $\operatorname{PMD}\left(D_{1}, D_{2}\right)$



## Step 1

(1) $K: P \times P \rightarrow \mathbb{R}$
(2) Optimization algorithm

- What's the best (minimum-cost) way to assign the polygons?
(3) Assignment problem solved by the Hungarian method [Kuhn 1955]
© The cost of the
minimum-weight polygon
mapping
- Polygon Mapping Distance $\operatorname{PMD}\left(D_{1}, D_{2}\right)$



## Step 1

(1) $K: P \times P \rightarrow \mathbb{R}$
(2) Optimization algorithm

- What's the best (minimum-cost) way to assign the polygons?
(3) Assignment problem solved by the Hungarian method [Kuhn 1955]
(9) The cost of the minimum-weight polygon mapping :
- Polygon Mapping

Distance $\operatorname{PMD}\left(D_{1}, D_{2}\right)$


## Step 1

## Weaknesses：

－K provides a location information．
－K does not take into account the labor work that has to be done to change a polygon from the CG to a correct polygon from the GT
－An additional information needed．


## Step 1

## Weaknesses：

－K provides a location information．
－K does not take into account the labor work that has to be done to change a polygon from the CG to a correct polygon from the GT
－An additional information needed．


## Step 1

Weaknesses:

- K provides a location information.
- K does not take into account the labor work that has to be done to change a polygon from the CG to a correct polygon from the GT.
- An additional information
needed.



## Step 1

Weaknesses:

- K provides a location information.
- K does not take into account the labor work that has to be done to change a polygon from the CG to a correct polygon from the GT.
- An additional information needed.



## Step 2

Labor work consideration:

- To reveal how many edit operations have to be done to change a polygon into another according to some basic operations.
- Cycle Graph Edit

Distance (CGED) for
polygon comparison


## Step 2

Labor work consideration:

- To reveal how many edit operations have to be done to change a polygon into another according to some basic operations.
- Cycle Graph Edit Distance (CGED) for polygon comparison



## From graph to polygon



Figure: From polygon to cycle graph

The problem turns into a graph comparison problem.

## Graph comparison



Figure: A possible edit path between graph g1 and g2 (node labels are represented by different shades of grey)[Riesen 2009]

The cost functions for attributed cycle graph matching are:

Table: Edit costs

|  | Node | Edge |
| :--- | :---: | :---: |
| Label Sub- <br> stitution | $\gamma\left(\left(l_{i}^{A}\right) \rightarrow\left(l_{j}^{B}\right)\right)=\left\|\frac{l_{i}^{A}}{\|A\|}-\frac{l_{j}^{B}}{\|B\|}\right\|$ | $\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow\left(\Phi_{j}^{B}\right)\right)=\frac{\left\|\Phi_{i}^{A}-\Phi_{j}^{B}\right\|}{360}$ |
| Addition | $\gamma\left(\lambda \rightarrow\left(l_{j}^{B}\right)\right)=\frac{l_{j}^{B}}{\|B\|}$ | $\gamma\left(\lambda \rightarrow\left(\Phi_{j}^{B}\right)\right)=\frac{\left\|\Phi_{j}^{B}\right\|}{360}$ |
| Deletion | $\gamma\left(\left(l_{i}^{A}\right) \rightarrow \lambda\right)=\frac{l_{i}^{A}}{\|A\|}$ | $\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow \lambda\right)=\frac{\left\|\Phi_{i}^{A}\right\|}{360}$ |

## Operation on polygons

Editing a vectorization with the basic operations are:

- Add
- Delete
- Move

Impact on the graph
representation

- Through linear combinations
- It is possible to recreate the usages of a person modifying a vectorization

(a) Original

(c) Delete

(b) Add

(d) Move

Figure: Basic edit operations applied to a polygon.

## Operation on polygons

Editing a vectorization with the basic operations are:

- Add
- Delete
- Move

Impact on the graph
representation

- Through linear combinations
- It is possible to recreate the usages of a person modifying a vectorization

(a) Original

(b) Add

(c) Delete

(d) Move

Figure: Basic edit operations applied to a polygon.

## Operation on polygons

Editing a vectorization with the basic operations are:

- Add
- Delete
- Move


## Impact on the graph

representation

- Through linear combinations
- It is possible to recreate the usages of a person modifying a vectorization



## Operation on polygons

Editing a vectorization with the basic operations are:

- Add
- Delete
- Move

Impact on the graph representation

- Through linear combinations
- It is possible to recreate the usages of a person modifying a vectorization


Figure: Basic edit operations applied to a polygon.

## Operation on polygons

Editing a vectorization with the basic operations are:

- Add
- Delete
- Move

Impact on the graph representation

- Through linear combinations
- It is possible to recreate the usages of a person modifying a vectorization

(a) Original

(c) Delete
(b) Add

(d) Move

Figure: Basic edit operations applied to a polygon.

## Operation on polygons

Editing a vectorization with the basic operations are:

- Add
- Delete
- Move

Impact on the graph representation

- Through linear combinations
- It is possible to recreate the usages of a person modifying a vectorization



## Impact on the graph representation

Edit operation for segment deletion

- Delete a segment $=$ Delete a node and an edge into the graph
- We conclude:

- Theses deletions create an orphan edge that must be reconnected
- Consequently we conclude:

$$
\text { substitution }=\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow\left(\Phi_{j}^{B}\right)\right)
$$

## Impact on the graph representation

Edit operation for segment deletion

- Delete a segment $=$ Delete a node and an edge into the graph
- We conclude:

$$
\text { deletions }=\gamma\left(\left(l_{i}^{A}\right) \rightarrow \lambda\right)+\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow \lambda\right)
$$

- Theses deletions create an orphan edge that must be reconnected
- Consequently we conclude:

$$
\text { substitution }=\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow\left(\Phi_{j}^{B}\right)\right)
$$

## Impact on the graph representation

Edit operation for segment deletion

- Delete a segment $=$ Delete a node and an edge into the graph
- We conclude:

$$
\text { deletions }=\gamma\left(\left(l_{i}^{A}\right) \rightarrow \lambda\right)+\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow \lambda\right)
$$

- Theses deletions create an orphan edge that must be reconnected
- Consequently we conclude:


## Impact on the graph representation

Edit operation for segment deletion

- Delete a segment $=$ Delete a node and an edge into the graph
- We conclude:

$$
\text { deletions }=\gamma\left(\left(l_{i}^{A}\right) \rightarrow \lambda\right)+\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow \lambda\right)
$$

- Theses deletions create an orphan edge that must be reconnected
- Consequently we conclude:

$$
\text { substitution }=\gamma\left(\left(\Phi_{i}^{A}\right) \rightarrow\left(\Phi_{j}^{B}\right)\right)
$$

## Impact on the graph representation

Edit operation for segment deletion

- Finally, the sequence of operations is:

$$
\gamma\left(s_{i} \rightarrow \lambda\right)=\text { deletions }+ \text { substitution }
$$

- Simply, we swap formal expressions by their corresponding costs:



## Impact on the graph representation

Edit operation for segment deletion

- Finally, the sequence of operations is:

$$
\gamma\left(s_{i} \rightarrow \lambda\right)=\text { deletions }+ \text { substitution }
$$

- Simply, we swap formal expressions by their corresponding costs:

$$
\gamma\left(s_{i} \rightarrow \lambda\right)=\frac{l_{i}^{A}}{|A|}+\frac{\Phi_{i}^{A}}{360}+\frac{\left|\Phi_{i}^{A}-\Phi_{j}^{B}\right|}{360}
$$

## Experiments

- Database description
- Protocol definition
- Tests:
- Polygon Matching Distance (PMD)
- Matched Edit Distance (MED)
- Cadastral parcel retrieval evaluation
- are PMD and MED representative of polygon deformations ?
- Shape variation
- Polygonal approximation modification


## Experiments

- Database description
- Protocol definition
- Tests:
- Polygon Matching Distance (PMD)
- Matched Edit Distance (MED)
- Cadastral parcel retrieval evaluation
- are PMD and MED representative of polygon deformations ?
- Shape variation
- Polygonal approximation modification


## Experiments

- Database description
- Protocol definition
- Tests:
- Polygon Matching Distance (PMD)
- Matched Edit Distance (MED)
- Cadastral parcel retrieval evaluation
- are PMD and MED representative of polygon deformations ?
- Shape variation
- Polygonal approximation modification


## Experiments

- Database description
- Protocol definition
- Tests:
- Polygon Matching Distance (PMD)
- Matched Edit Distance (MED)
- Cadastral parcel retrieval evaluation
- are PMD and MED representative of polygon deformations ?
- Shape variation
- Polygonal approximation modification


## Databases I

- Base A Shape distortion: Derived from [Delalandre 2010] and [Dosch 2006]
- To evaluate polygon detection methods


Figure: A sample among the seventy symbols used in our ranking test.


Original Image


Noise Level 1


Noise Level 2


Noise Level 3


Noise Level 4

## Databases II

- Base B Binary degradation: From the data set provided by the GREC'03 contest.
- The higher is the noise level the higher are the distortions on the polygonal approximation.



## Databases III

Image


Skeleton


Polygon


Original
Noise level 3

## Databases III



Original
Noise level 3

## Databases IV

- Base C Cadastral map collection from ALPAGE project
- Computer generated elements (CG).
- Manually vectorized references (GT).


Figure: Two vectorizations to be mapped $\left(\left|D_{C G}\right|=46\left|D_{G T}\right|=40\right)$.

## Protocol



Figure: Ranking explanation. Ranks 3 and 1 were swapped by PMD

## Ranking

|  | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\tau$ | 0.0000 | 0.6000 | 0.8000 | 0.7029 | 0.8000 | 1.0000 |

Table: Summary of Kendall correlation ( $\tau$ ). PMD vs ground-truth

|  | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\tau$ | 0.3333 | 0.6190 | 0.7143 | 0.7107 | 0.8095 | 1.0000 |

Table: Summary of Kendall correlation ( $\tau$ ). MED vs ground-truth

## Application to the evaluation of parcel detection I

A visual dissimilarity measure of local anomalies:

- Comparing maps two by two.
- It facilitates the spotting of errors
- A visual signs are worth a thousand words

(a) GT

(b) CG

Figure: Two vectorizations to be mapped $\left(\left|D_{C G}\right|=46\left|D_{G T}\right|=40\right)$.

## Application to the evaluation of parcel detection II



Figure: Local dissimilarities between the two maps. The lighter the better.

## Summary I

- A protocol for performance evaluation of polygon detection algorithms.
- Our protocol is positioned as an extension of prior works, an extension at polygon level.
- Our contribution is two-fold
- An object mapping algorithm to roughly locate errors within the drawing.
- A cycle graph matching distance that depicts the accuracy of the polygonal approximation.


## Summary I

- A protocol for performance evaluation of polygon detection algorithms.
- Our protocol is positioned as an extension of prior works, an extension at polygon level.
- Our contribution is two-fold
- An object mapping algorithm to roughly locate errors within the drawing.
- A cycle graph matching distance that depicts the accuracy of the polygonal approximation.


## Summary I

- A protocol for performance evaluation of polygon detection algorithms.
- Our protocol is positioned as an extension of prior works, an extension at polygon level.
- Our contribution is two-fold
- An object mapping algorithm to roughly locate errors within the drawing.
- A cycle graph matching distance that depicts the accuracy of the polygonal approximation.


## Summary II

- Both contributions were theoretically defined and adapted to the PE of polygonized documents.
- A set distance for the polygon matching distance (PMD) - Dedicated edit costs for the graph matching method (MED)
- The behavior of our set of indiees was analyzed when increasing image degradation.


## Summary II

- Both contributions were theoretically defined and adapted to the PE of polygonized documents.
- A set distance for the polygon matching distance (PMD)
- Dedicated edit costs for the graph matching method (MED)
- The behavior of our set of indices was analyzed when increasing image degradation.


## Summary II

- Both contributions were theoretically defined and adapted to the PE of polygonized documents.
- A set distance for the polygon matching distance (PMD)
- Dedicated edit costs for the graph matching method (MED)
- The behavior of our set of indices was analyzed when increasing image degradation.


## Summary II

- Both contributions were theoretically defined and adapted to the PE of polygonized documents.
- A set distance for the polygon matching distance (PMD)
- Dedicated edit costs for the graph matching method (MED)
- The behavior of our set of indices was analyzed when increasing image degradation.


## Conclusion and perspective

- Algorithms and methodologies designed in the ALPAGE project context.
- A team work: Many interactions with multidisciplinary people.
- Key: communication and listening to each other


## Conclusion and perspective

- Algorithms and methodologies designed in the ALPAGE project context.
- A team work: Many interactions with multidisciplinary people.
- Key: communication and listening to each other


## Conclusion and perspective

- Algorithms and methodologies designed in the ALPAGE project context.
- A team work: Many interactions with multidisciplinary people.
- Key: communication and listening to each other


## To take the stock on our work

## Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## To take the stock on our work

Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## To take the stock on our work

Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## To take the stock on our work

Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## To take the stock on our work

Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## To take the stock on our work

Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## To take the stock on our work

Summary:

- Color image analysis
- A modeling stage
- Domain-object extraction
- Graph-based representation
- Graph comparison
- Vectorization evaluation
- Vector to be inserted in a Geographic Information System.


## Perspective

Near future:

- Graph: To check out the influence of subgraph matching with different depths $(1,2, \ldots,|G|)$.
- Will it increase the accuracy in classification ?
- What about time consumption?
- Performance Evaluation: To extend method to more complex objects than polygons.
- To extend the concept to connected segments around the root polygon in order to constitute piece of symbols.
- To change the scope of our performance evaluation tool to the direction of object spotting.
Related work:
- According this formulation, we are close to the work of [Lladós 2001]
- J. Lladós et al, "Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjaccency, Graph hss" |FEEE TPAMI, vol. 23, 2001, pp. 1137-1143.


## Perspective

Near future:

- Graph: To check out the influence of subgraph matching with different depths $(1,2, \ldots,|G|)$.
- Will it increase the accuracy in classification ?
- What about time consumption ?
- Performance Evaluation: To extend method to more complex objects than polygons.
- To extend the concept to connected segments around the root polygon in order to constitute piece of symbols.
- To change the scope of our performance evaluation tool to the direction of object spotting.
Related work:
- According this formulation, we are close to the work of [Lladós 2001]
- J. Lladós et al, "Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency, Graphs, "IEEE TPAMI, vol. 23, 2001, pp. 1137-1143.


## Perspective

Near future:

- Graph: To check out the influence of subgraph matching with different depths $(1,2, \ldots,|G|)$.
- Will it increase the accuracy in classification ?
- What about time consumption ?
- Performance Evaluation: To extend method to more complex objects than polygons.
- To extend the concept to connected segments around the root polygon in order to constitute piece of symbols.
- To change the scope of our performance evaluation tool to the direction of object spotting.
Related work:
- According this formulation, we are close to the work of [Lladós 2001].
- J. Lladós et al, "Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency Graphs" IEEE TPAMI, vol. 23, 2001, pp. 1137-1143.


## Food for thought

Long-term future: Semantic

- Graph Matching for Model or Ontology Comparison
- Image Processing Driven by Knowledge


## Food for thought

Long-term future: Semantic

- Graph Matching for Model or Ontology Comparison
- Image Processing Driven by Knowledge


## Key contributions

- Graph classification: Published in PRL:
- R. Raveaux J.-C. Burie and J.-M. Ogier. "A graph matching method and a graph matching distance based on subgraph assignments", Pattern Recognition Letters, 2009.
- Performance Evaluation: Accepted in IJDAR:
- R. Raveaux, J-C Burie and J-M Ogier. "A Local Evaluation of Vectorized Documents by means of Polygon Assignments and Matching", International Journal on Document Analysis and Recognition, 2010.
- Graph mining: On the way, round 2 in CVIU:
- R. Raveaux, S. Adam, P. Héroux, E. Trupin. "Learning Graph Prototypes for Shape Recognition", Computer Vision and Image Understanding .


## Thank you for your attention

Some links:
ALPAGE: http://lamop.univ-paris1.fr/alpage/
Software: http://alpage-13i.univ-lr.fr/
Contact: http://romain.raveaux.free.fr/

H Bunke.
On a relation between graph edit distance and maximum common subgraph.
Pattern Recognition Letters, vol. 18, no. 9, pages 689-694, 1997.

囯 Horst Bunke and Kaspar Riesen.
Improving vector space embedding of graphs through feature selection algorithms.
Pattern Recognition, vol. In Press, Corrected Proof, pages -, 2010.

围 A Chhabra and I Phillips.
The Second International Graphics Recognition Contest Raster to Vector Conversion: A Report. Graphics Recognition: Algorithms and Systems, Lecture Notes in Computer Science, Springer, vol. 1389, 1998.

易
Mathieu Delalandre, Ernest Valveny, Tony Pridmore and Dimosthenis Karatzas.
Generation of synthetic documents for performance evaluation of symbol recognition \& spotting systems.
International Journal on Document Analysis and Recognition, page Online first, 2010.

R Philippe Dosch and Ernest Valveny.
Report on the Second Symbol Recognition Contest, 2006.
Reven Gold and Anand Rangarajan.
Graph matching by graduated assignment.
IEEE transactions on pattern analysis and machine intelligence, pages 239-244, 1996.

Dzena Hidovic and Marcello Pelillo.
Metrics For Attributed Graphs Based On The Maximal Similarity Common Subgraph.

International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 3, pages 299-313, 2004.

國 O Hori and D S Doermann.
Quantitative measurement of the performance of raster-to-vector conversion algorithms.
Graphics recognition - methods and applications (Lecture Notes in Computer Science), vol. 1072, pages 57-68, 1996.

Salim Jouili and Salvatore Tabbone.
Graph Matching Based on Node Signatures.
In Graph-Based Representations in Pattern Recognition, pages 154-163, 2009.

B B Kong, I T Phillips, R M Haralick, A Prasad and R Kasturi. A benchmark: performance evaluation of dashed-line detection algorithms.

Graphics recognition - methods and applications (Lecture Notes in Computer Science), vol. 1072, pages 270-285, 1996.

图 H W Kuhn.
The Hungarian method for the assignment problem.
Naval Research Logistic Quarterly, vol. 2, pages 83-97, 1955.
固 J Lladós, E Marti and J J Villanueva.
Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pages 1137-1143, 2001.
R
D Lopresti and G Wilfong.
A fast technique for comparing graph representations with applications to performance evaluation.
International Journal on Document Analysis and Recognition, vol. 6, no. 4, pages 219-229, 2003.

目 Richard Myers，Richard C Wilson and Edwin R Hancock． Bayesian Graph Edit Distance．
IEEE Trans．Pattern Anal．Mach．Intell．，vol．22，no．6，pages 628－635， 2000.

囯 Kaspar Riesen and Horst Bunke．
Approximate graph edit distance computation by means of bipartite graph matching．
Image Vision Comput．，vol．27，no．7，pages 950－959， 2009.
雷 Antonio Robles－Kelly and Edwin R Hancock．
Graph Edit Distance from Spectral Seriation．
IEEE Trans．Pattern Anal．Mach．Intell．，vol．27，no．3，pages 365－378， 2005.

R Ali Shokoufandeh，Lars Bretzner，Diego Macrini，M Fatih Demirci，Clas Jönsson and Sven Dickinson．
The representation and matching of categorical shape．

Computer Vision and Image Understanding, vol. 103, no. 2, pages 139-154, 2006.

Eiu Wenyin and Dov Dori.
A protocol for performance evaluation of line detection algorithms.
Machine Vision and Applications, vol. 9, no. 5, pages 240-250, 1997.

