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Digital library

Graphic documents:

Automatic indexing

Symbol descriptor [T-O
Nguyen 08]
Relational indexing in
line-drawing images
[Rusiñol 10]
Drop cap indexing
[Uttama 05] [Coustaty
09]
Map indexing
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ALPAGE project

1 ALPAGE (diachronic analysis of the Paris urban area: a
geomatic approach)

2 Supported by the ANR (National Research Agency)
3 An association of 4 laboratories.

LAMOP of Paris-1, carrying the project, which includes
historians, specialists in urban history and digital tools.
LIENSS of La Rochelle: geographers specialized in geomatics.
ArScAn in Nanterre bringing together archaeologists and
geomaticians skilled in GIS and archeology of the parisian area.
L3i of La Rochelle,comprised of IT scientists specialized in
pattern recognition and vectorization.

4 Objective: To build a geographic information system (GIS)
about the pre-industrial Parisian area.
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Color restoration
Color space selection
Color segmentation

Color enhancement based on PCA

Independent system axis: Y = V (X − µ) X =

∣∣∣∣∣∣
R
G
B

∣∣∣∣∣∣
V are the eigenvectors of the covariance matrix.
µ is the mean vector.

Data extension in the direction of the main factorial axis.

Y ′ = KY

K =

∣∣∣∣∣∣
k1 0 0
0 k2 0
0 0 k3

∣∣∣∣∣∣
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Conventional representation

Difference color spaces:

Primary based system:RGB
Perceptual color space: L∗a∗b∗

Luminance – Chrominance representation: AC 1C 2
Independ axis system: I 1I 2I 3

A set of color components:

C = {Ci}Ni=1 = {R,G ,B, I 1, I 2, I 3, L∗, a∗, b∗, ...}

with Card(C)=25

The choice of a color space turns into a feature selection problem
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Find K ⊂ C with
Card(K ) = 3

Criteria: Maximization of
a classification rate

Classification: 1-NN

Search algorithm:

Name Type Searching algorithm
CFS Filter Greedy stepwise

DHCS Filter Ranker
GACS Wrapper Genetic Algorithm
OneRS Wrapper Ranker
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Modeling

Logical structure

To identify the map elements
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Problem statement
State of the art
Our proposal: Sub-graph matching
Summary

Graphs are everywhere...

Graphs in Reality

Graphs model objects and
their relationships.

Also referred to as
networks.

All common data
structures can be modeled
as graphs.

How similar are two graphs?

Graph similarity is the
central problem for all
learning tasks such as
clustering and
classification on graphs.
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Problem statement
State of the art
Our proposal: Sub-graph matching
Summary

From the beginning...

Definition and notation of a graph:

Definition

Let LV and LE denote the set of node and edge labels, respectively.
A labeled graph G is a 4-tuple G = (V ,E , µ, ξ) , where

V is the set of nodes,

E ⊆ V × V is the set of edges

µ : V → LV is a function assigning labels to the nodes, and

ξ : E → LE is a function assigning labels to the edges.

Let G1 = (V1,E1, µ1, ξ1) be the source graph

And G2 = (V2,E2, µ2, ξ2) the target graph

With V1 = (u1, ..., un) and V2 = (v1, ..., vm) respectively
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Problem statement
State of the art
Our proposal: Sub-graph matching
Summary

Graph isomorphism

Graph isomorphism

Find a mapping f : V1 → V2

i.e. x , y ∈ V1 ⇒ (x , y) ∈ E1

f is an isomorphism iff (f (x), f (y)) is an edge of G2.
No polynomial-time algorithm is known for graph isomorphism
Neither it is known to be NP-complete

Subgraph isomorphism

Means finding a subgraph G3 of G2 such that G1 and G3 are
isomorphic.
Subgraph isomorphism is NP-complete
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Problem statement
State of the art
Our proposal: Sub-graph matching
Summary

Error-tolerant graph isomorphism

Exact graph matching is useless in many computer vision
applications

Concerning graph matching under noise and distortion

The matching incorporates an error model to identify the
distortions which make one graph a distorted version of the
other

Problems for real world applications

Error-tolerant

To measure the similarity of two graphs.

Runtime may grow exponentially with number of nodes

This is an enormous problem for large datasets of graphs

Wanted: Polynomial-time similarity measure for graphs
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Comparison between Classical Graph-Matching Methods

Table: In Terms of Their Computational Complexity and the Ability to
Perform an Inexact Matching, [Lladós 2001].
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Graph Edit Distance (ED)

The minimum amount of distortion that is needed to transform G1

into G2

Distortions si : deletions, insertions, substitutions of nodes and
edges.

Edit path S = s1, ..., sn: A sequence of edit operations that
transforms G1 into G2.

Cost functions: Measuring the strength of a given distortion.

Edit distance d(G1,G2): Minimum cost edit path between two
graphs.

Problem of Edit Distance: NP complete

Explore the space of all possible mappings of the nodes and
edges of G1 to the nodes and edges of G2.

Edit Distance computation also has a worst case exponential
complexity which prevents its use in large datasets.
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Approximation to Graph Edit Distance (ED)

Different types of approximations were proposed in [Hidovic 2004].

Vector space embedding of graphs [Lopresti 2003],
[Bunke 2010].

Spectral graph theory [Robles-Kelly 2005].

Probabilistic methods [Myers 2000].

Combinatorial optimization [Gold 1996],
[Shokoufandeh 2006], [Riesen 2009],[Jouili 2009].
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Graph comparison through combinatorial optimization

Basic idea:

Methods are based on an optimization procedure mapping
local substructures
Any node(un) from G1 can be assigned to any node(vm) of G2,
Incurring some cost that depends on the un-vm assignment.
It is required to map all nodes in such a way that the total
cost of the assignment is minimized.

Cost matrix representation (C ):

Cij correspond to the costs of assigning the i th node of G1 to
the j th node of G2.

C =

c1,1 ... ... c1,m

... ... ... ...

... ... ... ...
cn,1 ... ... cn,m
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Combinatorial optimization: Comparative study

Node signature Distance

[Gold 1996] Node degree+Label *

[Shokoufandeh 2006] Eigen vector L2

[Riesen 2009] (1)Node+(2)Edge Edit cost
*: Depends on the graph attribute type.
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Our proposal

A generalization of prior works

Where local substructures are represented as graphs

Where the cost function c(i , j) is a graph distance

A graph matching method based on subgraph assignments
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Graph decomposition

A subgraph (sg):

A structure gathering the
edges and their
corresponding ending
vertices from a root
vertex.

Figure: Decomposition into
subgraph world
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Matrix representation I

The cost matrix contains the distances between every pair of
subgraphs from G1 and G2.

What’s the best (minimum-cost) way to assign the subgraphs?

Assignment problem solved by the Hungarian method
[Kuhn 1955]
The cost of the minimum-weight subgraph matching :

SubGraph Matching Distance SGMD(G1,G2)

Example of possible variations of SGMD:

SGMDED : Based on edit distance.

SGMDGP : Based on graph probing.

C =

c1,1 ... ... c1,m

... ... ... ...

... ... ... ...
cn,1 ... ... cn,m
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Our proposal is a pseudo metric

Positive
Symmetric
Triangle inequality

SGMDED is a lower bound for the edit distance

∀G1,G2 :
SGMDED(G1,G2)

max(|G1|, |G2|)
≤ ED(G1,G2)
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Hypothesis:

The more accurate the distance induced by graph matching is,
the better the matching is.

The question turns into a graph distance comparison:

Correlation

Classification
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Databases

IAM Graph Database Repository (Standardized graph data
sets for benchmarking).

Synthetic data set (Randomly generated for scalability
testing).

Home-made data sets (Domain-dependent applications).

Table: Characteristics of the four data sets used in our computational
experiments

Base A Base B Base C Base D

Number of classes (N) 50 10 32 15
| Training | 14128 114 9600 5062
| Validation | 14101 56 3200 1688

Average number of nodes 12.03 5.56 8.84 4.7
Average number of edges 9.86 11.71 10.15 3.6
Average degree of nodes 1.63 4.21 1.15 1.3
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Protocol

Correlation between ED and suboptimal distances:

Rank correlation: Kendall correlation
Distance correlation: Pearson correlation

Classification stage

1-NN classifier
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Summary

Rank relationship with edit distance II

SGMDED vs ED

M = 1200 queries.

Top k responses to each query (k=30)

A null hypothesis of independence(H0) between the two
responses

Ranks are observed as ordered categorical variables

Kendall correlation coefficient(τ) is computed for each query
pair (SGMDED vs ED)

From the 1200 tests, only 124 have a p-value greater than
0.05

124 queries did not pass the Kendall’s test

H0 can be rejected in 89.67% cases, with a risk of 5%.
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Classification stage

The standard nearest-neighbor (1− NN ) classification rule assigns
x to the class of the most similar graph in a set of labeled training
data.

Table: Classification rate according to the graph distance in use

Method Base A Base B Base C Base D

ED(%) —– 92.86 —– 82.10
SGMDED(%) 88.54 94.64 99.54 80.86

SGMDGP(%) 88.48 94.64 99.21 78.79

GP(%) 57.01 92.86 98.33 59.89

NMD(%) 29.49 89.28 88.75 36.96
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Time complexity

Figure: Time complexity
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Flexible distance with two meta-parameters:

Sub distance
Subgraph size
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Transition

We have presented some general applications of graph
comparison

Next slides are dedicated to the use of graph distances in a
context of performance evaluation
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Around performance evaluation for R2V system I

Performance evaluation of vectorization and line detection has
been reported by [Kong 1996], [Hori 1996], [Wenyin 1997] and
[Chhabra 1998].

A method for evaluating the recognition of dashed lines

Hori and Doermann [Hori 1996], a measurement methodology
for task-specific raster to vector conversion

Wenyin and Dori [Wenyin 1997], a protocol for evaluating the
recognition of straight and circular lines

Phillips and Chhabra [Chhabra 1998], a methodology for
evaluating graphics recognition systems operating on images
that contain straight lines and text blocks
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Around performance evaluation for R2V system II

All these methods are limited in their applicability to the
ALPAGE project.

All prior works focused on a lower level of consistency (arcs
and segments) where we need an evaluation at polygon level.

Modification of previous methods to a polygon entity is not
trivial

A higher level requires a matching task when segments do not

We propose an extension to polygon level of related
approaches

Evaluation of Vectorized Documents by means of Polygon
Assignments and a Graph-Based Dissimilarity
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1 Polygon detection

2 Polygon approximation
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Problem definition: Polygon detection

Given two sets of
polygons, D1 and D2.

Associated together with
a weight function
C : D1 × D2 → R
Find a mapping
f : D1 → D2 such that
the cost function Eq. 1 is
minimized∑

p∈D1

C (p, f (p)), (1)

where p is a polygon

Figure: Polygon partitions. (up)
D1; (down) D2
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Problem definition: Polygon approximation

Given two polygons P1, P2 with N and M points, respectively.

The approximation error between P1 and P2 , d(P1,P2).

(a) P1 (b) P2

Figure: Polygons to be compared.
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Toward a proposition for evaluating polygon detection
algorithms

Our proposal for assessing the quality of polygon detection system:

Two viewpoints:

1 Polygon location

2 Polygon approximation

A Local Evaluation of Vectorized Documents by means of Polygon
Assignments and Matching
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difference

To evaluate how well
polygons are detected
and located

2 A cycle graph edit
distance applied to
polygons

The correctness of the
polygonal
approximation
(Vectorization
precision).
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Step 1

1 K : P × P → R
2 Optimization algorithm

What’s the best
(minimum-cost) way to
assign the polygons?

3 Assignment problem
solved by the Hungarian
method [Kuhn 1955]

4 The cost of the
minimum-weight polygon
mapping :

Polygon Mapping
Distance PMD(D1,D2)
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Step 1

Weaknesses:

K provides a location
information.

K does not take into
account the labor work
that has to be done to
change a polygon from
the CG to a correct
polygon from the GT.

An additional information
needed.
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Step 2

Labor work consideration:

To reveal how many edit
operations have to be
done to change a polygon
into another according to
some basic operations.

Cycle Graph Edit
Distance (CGED) for
polygon comparison
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From graph to polygon

(a) Polygon (b) Cycle Graph

Figure: From polygon to cycle graph

The problem turns into a graph comparison problem.
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Graph comparison

Figure: A possible edit path between graph g1 and g2 (node labels are
represented by different shades of grey)[Riesen 2009]

The cost functions for attributed cycle graph matching are:

Table: Edit costs

Node Edge

Label Sub-
stitution

γ((lAi )→ (lBj )) =

∣∣∣∣∣ lAi
|A| −

lBj
|B|

∣∣∣∣∣ γ((ΦA
i )→ (ΦB

j )) =
|ΦA

i −ΦB
j |

360

Addition γ(λ→ (lBj )) =
lBj
|B| γ(λ→ (ΦB

j )) =
|ΦB

j |
360

Deletion γ((lAi )→ λ) =
lAi
|A| γ((ΦA

i )→ λ) =
|ΦA

i |
360
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Operation on polygons

Editing a vectorization with
the basic operations are:

Add

Delete

Move

Impact on the graph
representation

Through linear
combinations

It is possible to recreate
the usages of a person
modifying a vectorization

(a) Original (b) Add

(c) Delete (d) Move

Figure: Basic edit operations
applied to a polygon.
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applied to a polygon.
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We conclude:
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Edit operation for segment deletion

Finally, the sequence of operations is:

γ(si → λ) = deletions + substitution

Simply, we swap formal expressions by their corresponding costs:

γ(si → λ) =
lAi
|A|

+
ΦA

i

360
+
|ΦA

i − ΦB
j |

360
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Databases I

Base A Shape distortion: Derived from [Delalandre 2010] and
[Dosch 2006]

To evaluate polygon detection methods

Figure: A sample among the seventy symbols used in our ranking test.

Figure: Examples of increasing levels of vectorial distortion
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Databases II

Base B Binary degradation: From the data set provided by
the GREC’03 contest.

The higher is the noise level the higher are the distortions on
the polygonal approximation.
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Databases IV

Base C Cadastral map collection from ALPAGE project

Computer generated elements (CG).

Manually vectorized references (GT).

(a) GT (b) CG

Figure: Two vectorizations to be mapped (|DCG | = 46 |DGT | = 40).
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Protocol

Figure: Ranking explanation. Ranks 3 and 1 were swapped by PMD
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Ranking

Min. 1st Qu. Median Mean 3rd Qu. Max.

τ 0.0000 0.6000 0.8000 0.7029 0.8000 1.0000

Table: Summary of Kendall correlation (τ). PMD vs ground-truth

Min. 1st Qu. Median Mean 3rd Qu. Max.

τ 0.3333 0.6190 0.7143 0.7107 0.8095 1.0000

Table: Summary of Kendall correlation (τ). MED vs ground-truth
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Application to the evaluation of parcel detection I

A visual dissimilarity measure of local anomalies:

Comparing maps two by two.
It facilitates the spotting of errors
A visual signs are worth a thousand words

(a) GT (b) CG

Figure: Two vectorizations to be mapped (|DCG | = 46 |DGT | = 40).
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Application to the evaluation of parcel detection II

Figure: Local dissimilarities between the two maps. The lighter the
better.
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Summary I

A protocol for performance evaluation of polygon detection
algorithms.

Our protocol is positioned as an extension of prior works, an
extension at polygon level.

Our contribution is two-fold

An object mapping algorithm to roughly locate errors within
the drawing.
A cycle graph matching distance that depicts the accuracy of
the polygonal approximation.
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Both contributions were theoretically defined and adapted to
the PE of polygonized documents.

A set distance for the polygon matching distance (PMD)
Dedicated edit costs for the graph matching method (MED)

The behavior of our set of indices was analyzed when
increasing image degradation.
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Perspective

Near future:
Graph: To check out the influence of subgraph matching with
different depths (1,2,...,|G |).

Will it increase the accuracy in classification ?
What about time consumption ?

Performance Evaluation: To extend method to more
complex objects than polygons.

To extend the concept to connected segments around the root
polygon in order to constitute piece of symbols.
To change the scope of our performance evaluation tool to the
direction of object spotting.

Related work:
According this formulation, we are close to the work of
[Lladós 2001].

J. Lladós et al, “Symbol Recognition by Error-Tolerant
Subgraph Matching between Region Adjacency Graphs” IEEE
TPAMI, vol. 23, 2001, pp. 1137-1143.
To use this approach in a PE context
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Key contributions

Graph classification: Published in PRL:

R. Raveaux J.-C. Burie and J.-M. Ogier. “A graph matching
method and a graph matching distance based on subgraph
assignments”, Pattern Recognition Letters, 2009.

Performance Evaluation: Accepted in IJDAR:

R. Raveaux, J-C Burie and J-M Ogier. ”A Local Evaluation of
Vectorized Documents by means of Polygon Assignments and
Matching”,International Journal on Document Analysis and
Recognition, 2010.

Graph mining : On the way, round 2 in CVIU:

R. Raveaux, S. Adam, P. Héroux, E. Trupin. ”Learning Graph
Prototypes for Shape Recognition”, Computer Vision and
Image Understanding .
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Thank you for your attention

Some links:
ALPAGE: http://lamop.univ-paris1.fr/alpage/
Software: http://alpage-l3i.univ-lr.fr/
Contact: http://romain.raveaux.free.fr/
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