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Searching for an image is very popular 

 

 To retrieve similar information 
 Retrieve the name of a visited place 
 Retrieve the name of a person 

 

 To search for specific images 
 To compare images 
 To find the author 
 To illustrate a presentation 

 

 Made using internet research engines (Google, Yahoo, Flickr, ..) 

2 



 Has the same goals 
 Retrieve a similar/specific information 

 

 

 Used in many domains and organizations (EDM) 
 Medecine 

 Companies 

 Libraries 
 Many digitizating process are observed 

 Reduces costs 

 Speeds up treatments and frees up time 

 Makes the documents more accessible 
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 To preserve their content 

 from degradations 

 

 To make them available 

 Online consultation 

 Simultaneous consultation 

 

 To navigate / retrieve similar images 
 To date them 

 To identify printer 

 … 
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 Cultural Heritage 

 Memory of our societies 

 A huge amount of documents 
 

 Commitment of many digitization campaign 

(in Europe and in the world) 

 Google Book, Europeana, Impact, PIxL, …. 



 Need to deal with the problem of 
 Sharing documents 

 Navigation into these databases 
 

 Need to analyze historical documents 
 By characterizing their content  
 To Index them 
 To propose navigation services 

 

 Some historical documents features 
 Irregular structure 
 Noisy images 
 Huge amount of documents 
 … 

 

 NaviDoMass Project 
 Aims at developing services to navigate into these document image databases 
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 Images from the XVth and XVIth 
 Start of printing 

 Images degraded by time 

 Printed using wood stamp 
 Images in black and white 

 Composed of strokes 
 

 Lettrines ! 
 A letter with decoration 

 Many semantic information 
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 Historian point of view 

 

 

 

 
 

 

 Image processing point of view 

• Letter 
 
• Pattern 
 

• Background 
 

• Frame 
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Semantic Gap 



 Using query by example 

 

 

 

 

 
 

 

 Using specific keywords (from expert knowledge) 
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 La Rochelle 
+  Old harbour 
+  Two towers } 



 Keywords annotation 
 Manual 

 Automatic 

 Content-Based Image Retrieval 
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Representation 
computation 

Comparing the 
representation 

Representation 
computation 

{ 
Indexing 
process 



Keywords CBIR 

Advantages 
• Easy to implement 
• Fast to implement 

• Many works 
• Works quite well for frequent 

images 

Drawbacks 

• Difficulty to extract keywords 
• Polysemy 
• Langage dependant 
• Subjectivity 

• How to extract RoI or keypoints 
? 

• Which features ? 
• A picture is worth a thousand 

words 
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 Must be able to deal with 
 Low-level knowledge (image processing features) 

 High-level Knowledge (historian’s keywords) 

 

 Must be customizable 
 To be adapted to different use-cases 

 To be specified to images (damaged, weakly structured, …) 

 

 Outsource knowledge of the system 
 To be able to easily control the steps of the process 
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Make a system which allows: 

 

Query by Example  
 

And 

 

Query using keywords from expert 
domains 
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Low level 
features 

High level 
features 



Spatial 
relations 
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Complex 
Knowledge 

Base 

Texture 
Regions 

Shapes 
regions 

Inference 
Rules 

Historian 
knowledge 

User 
Queries 

Low level 
features 

High level 
features 

Mid-level 
features 



Two levels of analysis 

 

I. Automatic and complex image analysis 
 Extracting regions of interest 

 Describing their contents 
 Describing their relationships 

 Measuring their similarities 

 

II. Knowledge management 
 To represent historian’s knowledge 
 To represent image processing’s knowledge 
 To reduce the semantic gap between these domains 
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 Image simplification (different layers of information) 
 Brief state of the art 
 Method adopted 

 

 Complex Image description adapted to each layer 
 Shape layer 

 Brief state of the art 
 Proposed signatures 

 Texture layer 
 Brief state of the art 
 Proposed signatures 

 

 Evaluation of segmentation and description 
 Combination of shape and texture layers 
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 Consists in separating image content 

 

 Separation relies on different types of information 
 Uniformity 

 Texture 

 Color 

 … 

 

 Local vs Global 
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 Density criteria 

 

 Frequency criteria 

 

 Saliency criteria 
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Textured Homogeneous 



 Consist in applying a global filter on the image 
 Analysis based on the frequency domain 

 

 Many existing approaches 
 Wold decomposition [Francos 93] 

 Wavelet [Mallat 99] 

 Zipf law decomposition [Pareti 08] 

 MCA [Dubois 10] 

 … 

 

 Method adopted: Meyer decomposition [Aujol 05] 

 Linked with historian decomposition 
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 Meyer’s Decomposition 
 

 Why ? 
 Allows image simplification 

 Similar to experts’ decomposition 
 

 How does it work ? 
 Image content separated in 3 layers 

    U : shape’s layer V : texture’s layer W : noise 21 

Original image 



 U : Geometrical component 
 To get functions with a finite total variation 

 Correspond non-oscillating functions 

 Keep boundaries 

 

 V : Texture component 
 To get the oscillating functions 

 Correspond to oscillating to fast-oscillating functions with a mean equal to 0 

 Obtained why the Meyer’s norm (can be seen as an integral) [Mey01] 

 

 W : Noise component  
 All that does not belong to the two first layers 

 W = f – (U + V) 

 Denoise the image 

Functional Minimization 
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 Image simplification (different layers of information) 
 Brief state of the art 
 Method adopted 

 

 Complex Image description adapted to each layer 
 Shape layer 

 Brief state of the art 
 Proposed signatures 

 Texture layer 
 Brief state of the art 
 Proposed signatures 

 

 Evaluation of segmentation and description 
 Combination of shape and texture layers 
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 Issuing from PR and CV communities 

 

 Summarize the content of an image using 
statistical/structural description 

 

 Four main categories 

 Invariant moments [Hu 62], [Zernike 38] 

 Transformation-based approach [Bracewell 00] ,[Adam 00], [Tabbone 06] 

 Multi-resolution based representation [Mallat 99], [Bui 99], [Shen 99] 

 Structural signatures [Etemadi 91], Matsakis 99], [Wendling 02], [Llados 01] 



 Image simplification (different layers of information) 
 Brief state of the art 
 Method adopted 

 

 Complex Image description adapted to each layer 
 Shape layer 

 Brief state of the art 
 Proposed signatures 

 Texture layer 
 Brief state of the art 
 Proposed signatures 

 

 Evaluation of segmentation and description 
 Combination of shape and texture layers 
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Shapes’ layer 
1 

Simplified image 
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3-Means 
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Region selection based on their size 
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Neighbourhood Graph computation: 
• Each node =  a region 
• Edges = distance between 2 regions 

Similarity measure [Jouili 10]: 



2 2 2 

2 2 2 

2 2 2 0 0 0 

0 0 0 

0 0 0 

TF-IDF computation 

TF = Term Frequency 

Number of occurrences of pattern 
in an image 

IDF = Inverse Document Frequency 

Number of documents that 
contain the pattern 

29 Similarity measure between images: 



 Image simplification (different layers of information) 
 Brief state of the art 
 Method adopted 

 

 Complex Image description adapted to each layer 
 Shape layer 

 Brief state of the art 
 Proposed signatures 

 Texture layer 
 Brief state of the art 
 Proposed signatures 

 

 Evaluation of segmentation and description 
 Combination of shape and texture layers 
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 6 main categories of methods 
1. Kernel-based approaches 

 Stochastic approaches [Derin 87], [Komodakis 11] 

2. Model-based approaches 
 Markov models, AR, ARMA [Cheung 05] 

3. Descriptor-based approaches 
 Co-occurrence Matrix [Haralick 73] 

4. Methods using peculiar filters 
 Fourier, Gabor [Pham 07] 

5. Methods that rely on correlation and auto-correlation 
 [Rosenberger 99], [Uttama 08], [Journet 08] 

6. Methods that segment image into homogeneous areas 
 RLSA [Wong 82], XY-CUT [Journet 06], Voronoï [Fortune 86] 
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 Image simplification (different layers of information) 
 Brief state of the art 
 Method adopted 

 

 Complex Image description adapted to each layer 
 Shape layer 

 Brief state of the art 
 Proposed signatures 

 Texture layer 
 Brief state of the art 
 Proposed signatures 

 

 Evaluation of segmentation and description 
 Combination of shape and texture layers 
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 Images composed of strokes 
 To mime shades of grey 

 To give relief to images 

 

 Strokes correspond to 
 Semantic elements 

 Background 

 Shadows 

 Ground 

 … 
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 Image printed using strokes 

 

 
 

 Idea: the stroke becomes the basic information (instead of pixels) 

 Extract strokes 

 

 

 

 

 

 Describe strokes with features vector 
< Length, Width, Complexity, Orientation, Freeman Code > 

Original Textures layer Skeleton 

34 



 Bag of strokes 

 

 

 

 

 

 

 Image description = Histogram of occurrences 
 

 Similarity measure:  

Clustering 
 

 of strokes } 
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 Strokes grouping 
 Neighbouring strokes with similar properties are merged 

 

 
 

 Area selection  
 Region size 
 Number of strokes by region 

 Neighbourhood Graph construction 
 A node = a region / Edge = distance between 2 regions 

 

 Similarity measure [Jouili 10] 
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 Image simplification (different layers of information) 
 Brief state of the art 
 Method adopted 

 

 Complex Image description adapted to each layer 
 Shape layer 

 Brief state of the art 
 Proposed signatures 

 Texture layer 
 Brief state of the art 
 Proposed signatures 

 

 Evaluation of segmentation and description 
 Combination of shape and texture layers 
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Original Image 

Shape layer 

Groundtruth 
Validation 

Structural 

Approach: Graphs 

Statistical 

Approach: CBIR 

Noise layer Texture layer 

Groundtruth 
Validation 

Structural 

Approach: Graphs 

Statistical 

Approach: CBIR 

1 
 

2 
 

3 
 

4 
 

4 
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Fusion Fusion 

Global fusion 



Shapes 

 

 

 

 

 

 

 

 

Textures 
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1 
 



Shapes 

 

Textures 
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1 
 

Recall Precision 

92.4 % 84.8 % 

Recall Precision 

100 % 71.3 % 

• Recall: % of regions from the groundtruth that 
contain automatically extracted elements (shapes or 
strokes) 
 

• Precision: % of region from the groundtruth  area 
that are overlapped by the automatically extracted 
region 



 Lettrine database 
 Database used by Pareti et al [Pareti 08] 

 358 lettrines 

 Learning: 11% (10 images / style) 

 Recognition: 89% (318 images) 
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2 
 

3 
 

Style 1 Style 2 Style 3 Style 4 



Shapes 

 

Textures 
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k Recognition rate 

1 73.7 % 

3 92.5 % 

5 95.8 % 

• Graphs distance computed using [Jouili 10] 
 
 

• k-Nearest Neighbor [Cover67]: to search for similar 
images  (k=1 / k=3 / k=5) 
 

• Majority voting process: for k=3 and k=5 
 

2 
 

k Recognition rate 

1 60.6 % 

3 62.8 % 

5 62.8 % 



Shapes 

 

Textures 
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k Recognition rate 

1 63.4 % 

3 64.6 % 

5 70.1 % 

• Similarity measures 
 
 

• k-Nearest Neighbour [Cover67]: to search for 
similar images 
 

• Majority voting process: for k=3 and k=5, to find 
the most frequent style among outputs 

k Recognition rate 

1 78.8 % 

3 78.2 % 

5 78.5 % 
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 Shape’s descriptions fusion 

 

 

 

 
 

 Stroke’s descriptions fusion 

k Statistical Structural Total 

1 63.4 % 73.7 % 90.8 % 

3 64.6 % 92.5 % 96.4 % 

5 70.1 % 95.8 % 98 % 

k Statistical Structural Total 

1 78.8 % 60.6 % 85.2 % 

3 78.2 % 62.8 % 86.3 % 

5  78.5 % 62.8 % 87.4 % 
44 
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Layer Shapes Textures 

k Statistical Structural Statistical Structural Total 

1 63,1 % 73,7 % 78,8 % 60,6 % 

3 67 % 92,5 % 78,2 % 62,8 % 

5 70,1 % 95,8 % 78,5 % 62,8 % 
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5 
 

Recognition rates using a majority voting process on all the 
features available 



 Framework for historical images analysis 
 Decomposes images in layers 
 Describes each layer using complex description 

 Statistical signature 
 Structural signature 

 Makes the fusion between different kind of description 

 

 Advantage 
 Mix of signatures provides good results 

 

 Drawbacks 
 Far away from historian’s keywords 

 

 Need to take into account historian’s knowledge 
 To formally represent them 
 To combine them with image processing results 
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Two levels of analysis 

 

I. Automatic and complex image analysis 
 Extracting regions of interest 

 Describing their contents 
 Describing their relationships 

 Measuring their similarities 

 

II. Knowledge management 
 To represent historian’s knowledge 
 To represent image processing’s knowledge 
 To reduce the semantic gap between these domains 
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 Need to model and to structure: 
 Knowledge from historians 

 Knowledge from algorithms 

 

 Need to be able to deal with: 
 Low level semantic knowledge 

 High level semantic knowledge 

 

 Need to propose a framework to reduce semantic gap 
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 Ontology of historian’s knowledge 

 

 Ontology of image processing’s knowledge 

 

 Final ontology 

 

 Ontologies evaluation 
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 Obtained by discussing 

 

 Lettrine: overlapping of 3 layers  
 Background 

 Pattern 

 Letter 

 Identification 

 Alphabet 

 Colour 

 Font 

 

 Surrounder by a frame 

50 



 Lettrines 
 Complex images 

 Composed of semantic elements 

 Ontology 
 Represent an image as a set of regions 

 Regions are issuing from our algorithms 

 Represent the description of each region 
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Keywords from experts QbE / CBIR 

Knowledge 
Database 

Original 
Image 

Simplification 
in layers 

Specific 
Description 

KDB 
 
 



 Ontology of historian’s knowledge 

 

 Ontology of image processing’s knowledge 

 

 Final ontology 
 Link between two precedent ones 

 Enriched with inferences rules 

 

 Ontologies evaluation 
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Final 
ontolgy 

- 
Knowledge 
Database OWL 

equivalentCLass 



 Allow reasoning on knowledge database 
 

 Enrich the knowledge database 
 By using values from different concepts 

 By adding implicit knowledge 
 

 Applied on extracted regions and historian’s annotations 
 

 New knowledge: addition of new properties 
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Final 
Ontology 

Historian 
Ontology 

Image 
Processing 
Ontology 
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isBody 
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• Located in the center of the image 
• With few holes 
• The biggest region that satisfies the two first criteria 

 
• Lettrine has a figurative pattern 
• The region has few holes 
• The region is light grey 
• The region is in the center of the lettrine 
• The region is not labelled as « isLetter » 

Spatial 
relations 

 
 
 
 

Complex 
Knowledge 
Database 

Texture 
Regions 

Shapes 
regions 

Inference 
Rules 

Historian 
knowledge 

User 
Queries 



isLetter isBody 

Number of images 100 45 

Number of 
candidate regions 

584 112 

Detection rate 91% 98% 
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 Global system to manage knowledge 

 Issuing from historians 

 Issuing from image processing 

 Based on ontologies 

 

 The system propose a solution to reduce the semantic gap 
 Using inference rules 

 

 We propose a system that enables 
 Query by example 

 Query using keywords from the expert domains 
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 Global framework to analyse complex images 

 

 Creates a link between two domains 

 

 Allows reducing semantic gap using inference rules 

 

 Allows query by example and keywords query 

 

 Tested on old document images (lettrines) 
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 Image description 
 

 Use of another image simplification 
 Allows more layers 

 Could be extended to natural images 

 

 Propose an early fusion of signatures 
 To compare with late fusion 
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 Ontologies 
 Extend our model to others expert domain 

 Some works on comics are actually starting in L 3i 

 

 Inference rules 
 Propose rules on texture layer 

 To retrieve hashed background 

 To combine with rules on shapes 

 Propose automatic extraction of rules 
 Using relevance feedback 

 Using Machine learning algorithms 
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 20 Publications into journals and conferences 
 

 2 international journal papers (IEEE-SMCB / IJDAR) 

 
 1 national journal paper (TSI) 

 
 3 springer book sections (2 LNCS – 1 SCI) 

 
 1 invited conference (EUSIPCO 2011) 

 
 13 international and national conferences 
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